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Abstract. A recent study suggested that the nonlinear feedback loop of the three-
dimensional, non-dissipative Lorenz model (3D-NLM) plays a role as a nonlinear
restoring force in producing nonlinear oscillatory solutions, as well as linear periodic
solutions near a non-trivial critical point. A follow-up study using the 5D-NLM
examined the role of the extension of the nonlinear feedback loop in producing quasi-
periodic solutions with two incommensurate frequencies. In this study, we analyze
recurrent and quasi-periodic solutions within higher-dimensional NLMs (e.g., a 7D-
NLM) with the goal of understanding how further extension of the nonlinear feedback
loop may produce additional incommensurate frequencies.

While the nonlinear feedback loop of the 3D-NLM consists of a pair of downscaling
and upscaling processes, the extended feedback loop within the 5D-NLM introduces
two additional pairs of downscaling and upscaling processes, as compared to the
3D-NLM. Here, based on the extension of the nonlinear feedback loop within the
5D-NLM, we derive the 7D-NLM that has five pairs of downscaling and upscaling
processes with three pairs that are the same as those within the 5D-NLM. In the
7D-NLM, the second and fourth pairs of downscaling and upscaling processes provide
two-way interactions amongst the primary (the largest scale), secondary, and tertiary
(the smallest scale) modes. By comparing the numerical simulations using one- and
two-way interactions, we illustrate that proper representation of two-way interactions
is crucial for capturing recurrent solutions with accurate incommensurate frequencies.

We also derive mathematical equations in order to provide an analogy between
a linearized high-dimensional NLM and a system with different coupled springs. We
show that the locally linear 7D-NLM (5D-NLM) is analogous to a system with three
(two) different springs. This analogy can help illustrate how additional incommen-
surate frequencies may be generated by coupling additional springs with existing
springs, indicating a similar impact between the coupling of springs and the exten-
sion of the nonlinear feedback loop. At the end, we outline future work designed
for comparing various types of solutions for dissipative and non-dissipative LMs in
order to understand whether steady-state, chaotic or limit torus solutions may better
describe the nature of weather.
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feedback loop, quasi-periodicity, recurrent solutions.

10thCHAOS Conference Proceedings, 30 May - 2 June, 2017, Barcelona, Spain
c© 2017 ISAST

773



1 Introduction

In 1963, Prof. Lorenz introduced a set of three ordinary differential equations
(ODEs) for illustrating the nature of chaotic solutions that changed the view of
atmospheric predictability [1–5]. The set of ODEs is now known as the three-
dimensional Lorenz model (3DLM). Since chaotic solutions appear in the pres-
ence of nonlinearity within the 3DLM, the source of chaos has been suggested
to be nonlinearity. The 3DLM was derived from partial differential equations
(PDEs) that are the governing equations for the Rayleigh Benard convection
[6,1]. In the original PDEs, three various types of physical processes are non-
linear interactions, heating, and dissipations. In our recent studies using high-
dimensional LMs [7–13], we made an attempt at understanding the individual
and/or collective impact of the above physical processes on the characteristics
of solutions with the goal of extending the lead time for weather predictions
[14,15]. For example, the 5D and 7D LMs were derived in order to illustrate
the so-called negative nonlinear feedback in association with additional dissi-
pative and nonlinear terms [7,11], while the 6D and 8D LMs were used in order
to illustrate positive nonlinear feedback in association with additional heating
and nonlinear terms [10,12]. Negative (positive) nonlinear feedback increases
(decreases) the critical values for the Rayleigh parameter (i.e., the heating pa-
rameter) for the onset of chaos (see Table 1 in [12] for details). Recently, using
3D and 5D non-dissipative LMs that are conservative, we examined the col-
lective impact of heating and nonlinearity on the appearance of recurrent (i.e.,
periodic or quasi-periodic to be specific) solutions [8,13]. As compared to other
high-dimensional LMs [16,17], the strength of our high-dimensional LMs was
documented in [7,10,11].

In the 3DLM, steady-state solutions and chaotic solutions appear at small
and moderate values of the heating parameters, respectively. Additionally, limit
cycle solutions may appear within the 3DLM with large heating parameters. A
limit cycle (LC) is an isolated closed orbit near which no other closed orbits can
be found. As a result of the isolated nature of the LC, an orbit, beginning at
a point near the LC, will be attracted to the LC, indicating the independence
of the LC solution on initial conditions (ICs). The unique characteristic of a
LC solution implies better predictability as compared to a chaotic solution. By
comparison, periodic or quasi-periodic orbits within non-dissipative LMs are
not isolated and, thus, are dependent on the starting location. Therefore, a
comparison of the LC within the dissipative LM and a quasi-periodic solution
within the non-dissipative LM may provide a starting point for examining the
role of small (moderate) dissipations in generating LC (chaotic) solutions. Note
that when the limit cycle has two or more incommensurate frequencies, it is
referred to as the limit torus that is quasi-periodic.

The paper is organized as follows: 1) We first provide an introduction to
the topic; 2) In Section 2, we present mathematical equations for the 7D-NLM
and for an analogy of the locally linear 7D-NLM to a system with different
springs. 3) In Section 3, we discusses analytical solutions of incommensurate
frequencies for the locally linear 7D-NLM and numerical solutions of the linear
and nonlinear 7D-NLM. We also provide a mathematical comparison between
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the 3D-NLM for periodic solutions and the 3DLM containing large heating
parameters for LC solutions. We then present numerical solutions of the limit
torus from high-dimensional LMs (e.g., the 5DLM and 7DLM with r = 800).
4) Concluding remarks are provided at the end.

2 The seven-dimensional, non-dissipative Lorenz Model

This section describes governing equations for the 7D-NLM and the correspond-
ing locally linear 7D-NLM; and a mathematical analogy between the linearized
7D-NLM and a coupled system that contains three identical masses and three
different springs.

By applying the same approach that was used to derive the 5D-NLM [7,13],
we first obtain the 7DLM [11] and derive the 7D-NLM by removing the dissi-
pative terms of the 7DLM, as follows:

dX

dτ
=���−σX + σY, (1)

dY

dτ
= −XZ + rX −��Y , (2)

dZ

dτ
= XY −XY1 −��bZ, (3)

dY1

dτ
= XZ − 2XZ1 −���d0Y1, (4)

dZ1

dτ
= 2XY1 − 2XY2 −���4bZ1, (5)

dY2

dτ
= 2XZ1 − 3XZ2 −���d0Y2, (6)

dZ2

dτ
= 3XY2 −���9bZ2. (7)

In the equations shown above, dissipative terms are indicated using a crossout
symbol. As discussed in [11], (X,Y, Z, Y1, Z1, Y2, Z2) represent the amplitude
of the Fourier modes. We refer to (X,Y, Z) as the primary modes, (Y1, Z1) as
the secondary modes, and (Y2, Z2) as the tertiary modes. τ is dimensionless
time. The two parameters (σ, r) are the Prandtl number and the normalized
Rayleigh number (or the heating parameter), respectively. Detailed informa-
tion regarding these parameters and ignored terms is provided in [11]. The
linear heating term (rX) and the nonlinear force terms (e.g., −XZ and XY )
appear on the right-hand side of the above equations.

By applying a perturbation method that represents the total field (A) as a
sum of the reference state (Ac) and the perturbation (A′) (i.e., A = Ac + A′),
we transform Eqs. (1-7) into the following equations:

dX ′

dτ
= σY ′, (8)

dY ′

dτ
= (r − Zc)X

′ −XcZ
′ − FN(X ′Z ′), (9)
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dZ ′

dτ
= (Yc − Y1c)X

′ +XcY
′ −��
��
XcY

′
1 + FN(X ′Y ′ −X ′Y ′

1), (10)

dY ′
1

dτ
= (Zc − 2Z1c)X

′ +��
��
XcZ

′ − 2XcZ
′
1 + FN(X ′Z ′ − 2X ′Z ′

1), (11)

dZ ′
1

dτ
= (2Y1c − 2Y2c)X

′ + 2XcY
′
1 −��
��
2XcY

′
2+ FN(2X ′Y ′

1 − 2X ′Y ′
2). (12)

dY ′
2

dτ
= (2Z1c − 3Z2c)X

′ +��
��
2XcZ

′
1− 3XcZ

′
2 + FN(2X ′Z ′

1 − 3X ′Z ′
2), (13)

dZ ′
2

dτ
= 3Y2cX

′ + 3XcY
′
2 + FN(3X ′Y ′

2). (14)

As discussed in [7,13], the flag FN is introduced in order to perform linear
simulations (FN = 0) or nonlinear simulations (FN = 1). Equations (1-7) are
referred to as the 7D-NLM V1 and Eqs. (8-14) are referred to as the 7D-NLM
V2. The 7D-NLM V1 and V2 with FN = 1 should produce identical results
with the same initial conditions, except in cases when rounding errors lead to
different results in different models. The V2 with FN=0 is also referred to as
the locally linear 7D-NLM and, as discussed in Section 3.1, can be used for
a linear stability analysis. Four coupling terms form two pairs of downscaling
processes (the terms shown above in black circles) and upscaling processes (the
terms shown above in colored circles).

2.1 An analogy to a system with three coupled springs

Choosing FN = 0 and (Yc, Zc, Y1c, Z1c, Y2c, Z2c) = (0, r, 0, r
2 , 0,

r
3 ), we can ob-

tain:
d2Y ′

dτ2
= −Xc

d2Z ′

dτ2
= −X2

c (Y
′ − Y ′

1) (15)

from Eqs. (9-10),

d2Y ′
1

dτ2
= Xc

d2Z ′

dτ2
− 2Xc

d2Z ′
1

dτ2
= X2

c (Y
′ − 5Y ′

1 + 4Y ′
2) (16)

from Eqs. (10-12), and

d2Y ′
2

dτ2
= 2Xc

d2Z ′
1

dτ2
− 3Xc

d2Z ′
2

dτ2
= X2

c (4Y
′
1 − 13Y ′

2) (17)

from Eqs. (12-14).

For comparison with the 7D-NLM, we present governing equations for a
coupled system containing three identical masses and three different springs,
as shown in Figure 1c:

d2x1

dτ2
= −k1(x1 − x2), (18)

d2x2

dτ2
= −k2(x2 − x3)− k1(x2 − x1), (19)

d2x3

dτ2
= −k3x3 − k2(x3 − x2). (20)
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The top, middle, and bottom springs have spring constants of k3, k2, and
k1, respectively. Here, the top spring is attached to the ceiling on one end
and to the top mass on the other end. The upper (low) end of the middle
spring is attached to the top (middle) mass. For the bottom spring, its upper
(low) end is attached to the middle (bottom) mass. x1(τ), x2(τ), and x3(τ)
are the displacements of the centers of masses from equilibrium. By choosing
x1 = Y ′, k1 = X2

c , x2 = Y ′
1 , k2 = 4X2

c , x3 = Y ′
2 , and k3 = 9X2

c , we show
that Eqs. (18-20) are identical to Eqs. (15-17), respectively. In other words,
the above coupled system with three springs is identical to the locally linear
7D-NLM. Note that for each of the uncoupled one-mass-one-spring systems,
the frequency of oscillatory motion is either Xc, 2Xc, or 3Xc. By comparison,
in section 3.1, we show that the above system has three frequencies, but they
differ from the values of Xc, 2Xc, or 3Xc. More important, these frequencies
are incommensurate, leading to a quasi-periodic solution. Since the 7D-NLM
(5D-NLM) is derived by properly selecting new modes in order to extend the
nonlinear feedback loop of the 5D-NLM (3D-NLM), the 7D-NLM can be re-
duced to become a 5D-NLM (3D-NLM) by removing the tertiary (both tertiary
and secondary) modes, analogous to a system with two (one) springs, as shown
in Figure 1.

In the next section, we discuss how the extended nonlinear feedback loop
introduces two additional pairs of downscaling and upscaling processes that
produce an additional temporal oscillatory mode and couple it with two existing
temporal oscillatory modes.

3 Results

In this section, we present analytical solutions for eigenvalues with incommen-
surate frequencies within the locally linear 7D-NLM and numerical solutions
for the 7D-NLM. We also briefly compare the quasi-periodic solutions within
non-dissipative LMs and limit cycle solutions within dissipative LMs containing
large heating parameters.

3.1 Eigenvalue analysis

Without a loss of generality, the reference (basic) state Xc is determined as:

Xc =
√

X2
o + 49σr/18 (21)

based on the conservation of the normalized total energy. Here, Xo is an initial
condition for the total field of X. For the remaining basic states, we choose
(Yc, Zc, Y1c, Z1c, Y2c, Z2c) = (0, r, 0, r

2 , 0,
r
3 ). Plugging the above values into Eqs.

8 to 14 and setting FN = 0, the 7D-NLM system can be represented by a linear
system with the following matrix:
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A7D =




0 σ 0 0 0 0 0
0 0 −Xc 0 0 0 0

0 Xc 0 	

��
−Xc 0 0 0

0 0 	

��
Xc 0 −2Xc 0 0

0 0 0 2Xc 0 	

��
−2Xc 0

0 0 0 0 	

��
2Xc 0 −3Xc

0 0 0 0 0 3Xc 0




(22)

By applying Laplace’s formula and by expressing the determinant as deter-
minants of minors leads to the following equation:
λ7 + 19λ5X2

c + 66λ3X4
c + 36λX6

c = 0. (23)

As easily seen, one eigenvalue must be zero. By setting γ = λ2, the follow-
ing nonlinear equation of the third order must be solved in order to obtain the
remaining eigenvalues:
γ3 + 19γ2X2

c + 66γX4
c + 36X6

c = 0, (24)
which yields:

γ =

(
− 19

3 − 163(1+i
√
3)

6
3
√

−1702+27i
√
1967

− 1
6 (1− i

√
3)

3
√
−1702 + 27i

√
1967

)
X2

c ,

γ =

(
− 19

3 − 163(1−i
√
3)

6
3
√

−1702+27i
√
1967

− 1
6 (1 + i

√
3)

3
√
−1702 + 27i

√
1967

)
X2

c and

γ =

(
− 19

3 + 1
3

(
163

3
√

−1702+27i
√
1967

+
3
√
−1702 + 27i

√
1967

))
X2

c . (25)

The above expressions yield three different incommensurate frequencies, whose
numerical values are obtained from the imaginary parts of the following eigen-
values: λ1 ≈ i(0.818657)Xc λ2 = −λ1, λ3 ≈ i(1.91368)Xc, λ4 = −λ3, λ5 ≈
i(3.82983)Xc, λ6 = −λ5, and λ7 = 0. By comparison, the non-zero eigenvalues
of the 5D-NLM are ≈ ±i(0.874032)Xc and ≈ ±i(2.288246)Xc. In the next
section, the three frequencies in Eq. (25) will be used as theoretical values for
a comparison to the numerical results.

3.2 Numerical results

For numerical integrations, the parameters σ = 10 and b = 8/3 are kept con-
stant. The heating parameter is r = 25 for quasi-periodic solutions of the
non-dissipative LMs and r = 800 for LC solutions of the dissipative LMs. A di-
mensionless time interval (�τ) of 0.001 is used.

Figures 2a-d show the time evolution of solutions for the X ′, Y ′ (primary),
Y ′
1 (secondary), and Y ′

2 (tertiary) modes. Figures 2e-h display the correspond-
ing spectral analysis. Analytical solutions of the eigenvalues are shown with
green, blue, and red lines, denoted as theoretical values of high, moderate, and
low frequencies, respectively. For the primary modes (X ′ or Y ′), two prominent
frequencies exist. The two corresponding peaks within the spectrum display
good agreement with the analytical solution of eigenvalues indicated with blue
and red lines. In the numerical results, the low frequency mode has a much
larger amplitude than the moderate frequency mode. Thus, the time evolu-
tion of primary modes appears almost periodic. For the secondary mode (Y ′

1),
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two prominent frequencies can also be observed. The moderate-frequency mode
has an amplitude that is approximately 1/3 the amplitude of the low-frequency
mode. Therefore, the secondary mode appears quasi-periodic with the two fre-
quencies. The results are consistent with findings within the 5D-NLM (see
details in [13]). In addition to the primary and secondary modes that also ap-
pear within the 5D-NLM, a tertiary mode (Y ′

2) is included within the 7D-NLM
and an additional incommensurate frequency appears within the corresponding
locally linear 7D-NLM. Figure 2h provides the spectrum of the tertiary mode
containing three prominent frequencies that are consistent with analytical solu-
tions of the eigenvalues. The low-frequency mode has the largest amplitude and
the high-frequency mode has the smallest amplitude. As a result of the three
prominent frequencies, the tertiary mode appears to be the most “irregular”
solution as compared to the primary and secondary modes.

The impact of nonlinearity on the quasi-periodicity of the solution is dis-
cussed in Figure 3. Nonlinear and linear solutions have comparable amplitudes,
but different phases (Figure 3a). In Figure 3b, as indicated by the peaks of
black dots, three prominent frequencies appear within the nonlinear solution.
The low and moderate frequencies are in good agreement with the linear the-
oretical values, while the high frequency has a larger discrepancy as compared
to the theoretical value (in green). The 7DLM (as well as the 7D-NLM) was
derived based on an extension of the nonlinear feedback loop of the 5DLM.
As shown in Eq. 22, the role of the extended nonlinear feedback loop can be
illustrated using the matrix of the linearized model. For example, when the
coupling terms in the red and blue boxes are ignored (i.e., resetting these terms
to zero), the system contains three frequencies, Xc, 2Xc, and 3Xc, that are not
incommensurate. Namely, the inclusion of tertiary modes, based on the exten-
sion of the nonlinear feedback loop, introduces an additional (high) frequency
that is incommensurate with the existing frequencies (i.e., low and moderate
frequencies).

The role of the extended nonlinear feedback loop in producing quasi-periodic
solutions may be illustrated by ignoring some or all of the coupling terms in
the numerical solutions. Using the 5D-NLM [13], we previously examined the
impact of two-way and one-way interactions on the quasi-periodicity of solu-
tions containing two incommensurate frequencies. Using the 7D-NLM, for this
study, we focus on the impact of one-way interactions that provide downscal-
ing transfer from larger-scale processes to smaller-scale processes but that do
not provide upscaling transfer from smaller-scale processes to larger-scale pro-
cesses. In other words, one or two of the coupling terms in red or blue circles
may be ignored while coupling terms in black circles are kept in Eqs. 8-14.
When the coupling term in Eq. 10 shown in a red circle is neglected, the sec-
ondary modes (as well as the tertiary modes) cannot provide feedback to the
primary modes. When the coupling term shown in the blue circle is ignored in
Eq. 12, there is still a two-way interaction between the primary and secondary
modes, but only a one-way interaction between the secondary and tertiary
modes. In Fig. 4, the Y − Z cross sections display a quasi-periodic solution
containing three incommensurate frequencies for the control run for all cou-
pling terms (panel a), a periodic solution for a parallel run with XcY

′
1 ignored
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in Eq. 10 (panel b), and a quasi-periodic solution containing two incommensu-
rate frequencies for another parallel run with 2XcY

′
2 ignored in Eq. 12 (panel

c). For one-way coupling without the coupling term in Eq. (12), Eqs. 13-14
describe the time evolution of the tertiary modes (Y2−Z2) with an “external”
forcing of 2XcZ

′
1 that is enabled by the downscaling transfer of the secondary

mode (Z ′
1). Therefore, for this run, while the primary mode solutions (Y −Z)

display a quasi-periodic solution with two incommensurate frequencies (panel
c), the tertiary mode solutions (Y ′

2 − Z ′
2) display a quasi-periodic orbit with

three frequencies (panel d). Note that the three frequencies are not exactly
the same as those within the fully coupled system (e.g., Eq. 25). The above
discussions suggest the importance of proper coupling for producing accurate,
quasi-periodic solutions.

3.3 A comparison to the 3DLM using a large r

For the 3DLM with a large r, a multiscale analysis leads to the following ap-
proximate equations [18]:

dX

dτ
= σY, (26)

dY

dτ
= −XZ, (27)

dZ

dτ
= XY. (28)

The above equations are identical to the 3D-NLM with r=0 (e.g., Eqs. (1-3)
with Y1 = 0). While the 3DLM with a large r yields an isolated nonlinear
oscillatory solution that is independent of the initial conditions (as shown in
Fig. 5a), the approximate system (e.g., Eqs. 26-28) produces nonlinear os-
cillatory orbits that are dependent of their starting points [8]. In the former
system, the isolated closed solution is a limit cycle solution. By comparison,
while a high-dimensional NLM produces a quasi-periodic solution with incom-
mensurate frequencies that appears as a torus, high-dimensional dissipative
LMs with a large r produce limit torus solutions (i.e., LC solutions with in-
commensurate frequencies), as shown in Fig. 5. As discussed in Fig. 4 and in
[13], the quasi-periodicity of solutions is better shown within the secondary or
tertiary modes instead of the primary modes (as shown in the bottom panels
of Fig. 5). Therefore, isolated orbits within high-dimensional LMs with large
heating parameters are referred to as limit torus solutions. In addition to an
isolated nature, one of the major differences between a limit torus within a
dissipative LM at a larger r and the (regular) torus within the corresponding
non-dissipative LM is that the time change of total energy varies along the
limit torus.

4 Conclusions

For this study, we analyze and compare the recurrent (e.g., periodic or quasi-
periodic) solutions in higher-dimensional NLMs (e.g., the 5D-NLM and the 7D-
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NLM) with the goal of understanding the role of the extended nonlinear feed-
back loop (as well as the coupling terms) in producing additional incommen-
surate frequencies. While the 5D-NLM (3D-NLM) produces a quasi-periodic
(periodic) solution with two incommensurate frequencies (one frequency), the
7D-NLM, with an extended nonlinear feedback loop, yields quasi-periodic solu-
tions with three incommensurate frequencies. The 7D-NLM extends the non-
linear feedback loop of the 5D-NLM and has five pairs of downscaling and
upscaling processes. The second and fourth pairs of downscaling and upscal-
ing processes, referred to as the coupling terms, provide two-way interactions
amongst the primary (the largest scale), secondary, and tertiary (the smallest
scale) modes. Accurate representation of the two-way interactions is crucial
for capturing accurate recurrent solutions containing accurate incommensurate
frequencies. For example, results obtained using a one-way coupling in Figs.
4c-d indicate quasi-periodic solutions that contain two frequencies for the pri-
mary and secondary modes, but three frequencies for the tertiary modes. These
frequencies are not exactly the same as those obtained within a fully coupled
system (e.g., Eq. 25).

The importance of the coupling terms is further shown using mathematical
equations that provide an analogy between a linearized, high-dimensional NLM
and a system containing various coupled springs. We provide evidence that the
7D-NLM (5D-NLM) is analogous to a system containing three (two) differ-
ent springs. The analogy indicates similarity between extending the nonlinear
feedback loop and coupling additional springs with existing springs.

While non-dissipative LMs produce periodic or quasi-periodic solutions, dis-
sipative LMs with large heating parameters yield limit cycle (or limit torus)
solutions. The comparison suggests that: (1) the recurrence of solutions is
associated with the nonlinear feedback loop and its extension; and (2) the
isolated nature of a limit cycle (or limit torus) is associated with the inclu-
sion of small dissipation. Amongst the various types of solutions (e.g., chaotic
and LC solutions) within the 3DLM, chaotic solutions containing positive Lya-
punov exponents [19] have been widely used for illustrating the characteristics
of weather that never repeats. High-dimensional LMs also contain various types
of solutions, including limit torus solutions that possess quasi-periodicity and
non-zero growth rates. For our future work, we will systematically examine
various types of solutions (e.g., by computing the time change for total energy
along an orbit) using high-dimensional LMs (including a 9DLM) in order to
understand whether a steady-state, chaotic, or limit torus solution may better
describe the nature of weather.
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Figure 1: Systems with one mass and one spring (a), two masses and two springs
(b), and three masses and three springs (c). The three masses are identical (i.e.,
m1 = m2 = m3). Three spring constants, k1, k2 and k3, are selected as X2

c , 4X
2
c , and

9X2
c , respectively. The governing equations for the above systems in panels (a)-(c)

are identical to those for the locally linear 3D-NLM, 5D-NLM, and 7D-NLM, respec-
tively. The comparison illustrates how the nonlinear feedback loop and its extension,
enabled by the proper selection of high wavenumber modes, can produce recurrent
(i.e., periodic or quasi-periodic) solutions.
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Figure 2: The time evolution of solutions for the primary, secondary and tertiary
modes (i.e., Y , Y ′

1 and Y ′
2 ) for τ ∈ [0, 1.0] from the locally linear 7D-NLM. Panels

(a-d) display X ′, Y ′, Y ′
1 , and Y ′

2 , respectively. Panels (e-h) provide the corresponding
frequency analysis. The analytical solutions of eigenvalues for high, moderate, and
low frequencies are shown with green, blue, and red lines, respectively. The tertiary
mode (Y ′

2 ), with the smallest spatial scale, displays three prominent incommensurate
frequencies appearing to be the most “irregular” solution (right panels).
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Figure 3: A comparison of the linear (FN = 0) and nonlinear (FN = 1) solutions
(a). A frequency analysis of the nonlinear solution (b). The analytical solutions of
eigenvalues for high, moderate, and low frequencies are shown with green, blue, and
red lines, respectively.
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Figure 4: The impact of the coupling terms (i.e., one-way interaction, to be specific)
on the quasi-periodicity of solutions within 7D-NLM V2 with FN=0. Panels (a-c)
display the Y -Z cross section and panel (d) displays the Y2 − Z2 cross section. (a) A
quasi-periodic solution with three incommensurate frequencies from the model. (b) A
periodic solution with the coupling termXcY

′
1 ignored in Eq. (10). (c) A quasi-periodic

solution with two incommensurate frequencies for the primary mode solutions when
upscaling processes from the tertiary modes are disabled by ignoring the coupling
term 2XcY

′
2 in Eq. (12). (d) A quasi-periodic solution with three frequencies for the

tertiary mode solution resulting from a one-way downscaling transfer enabled by the
coupling term 2XcY

′
2 in Eq. (13).
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Figure 5: Limit cycle solutions within the 3DLM (a), 5DLM (b), and 7DLM (c) with
r=800. Solutions for the period of τ = 1.2 − 25 are provided. Panels (d)-(f) show
the time evolution of the quasi-periodic solutions for τ ∈ [1.2, 2.2] for the secondary
mode (Y ′

1 ) of the 5DLM, the secondary mode (Y ′
1 ) of the 7DLM, and the tertiary

mode (Y ′
2 ) of the 7DLM, respectively.
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