DAO’s suggestions to the software design of CAM

S.-J. Lin, S. Nebuda, B.-W. Shen, J.-D. Chern, W. Sawyer, and A. DaSilva
March 16, 2001

Data Assimilation Office, NASA Goddard Space Flight Center

1 Code structure & Array layout

1.1 Modular physical packages

All physics packages should be modularized and put in separate directories. For example, under the main
directory “physics” there could be sub-directories specifically for moist convection, PBL parameterization,
Gravity wave Drag, cloud parameterization(s), and long- and short-wave radiations. This will enable easeir
swapping of individual physics package.

1.2 Array layout

For efficiency, there should be separate arrays for advected and non-advected tracers. The non-advécted trac-
ers should be declared in a way that is most efficient for physics/chemistry computation. But the advected
tracers should be dimensioned in the way that is most efficient for the particular dynamics. For example,
for the finite-volume dynamical core (fucore hereafter) it should be as follows:

real (r8) q_dyna(plon,beglat:endlat,plev,pcnst) ! advected tracers
real (r8) q_ phys(plon,plev,beglat:endlat,pnats) ! non-advected tracers

Currently a transpose of the array g3 to q__dyna is required inside dynpkg, which not only slows the
model down but also requires extra memory, particularly when there are many tracers.

It is also highly desirable to have separate restart files for dynamics and physics (see also section 32.).
For example, the non-advected tracers (including the prognostic cloud water) should be put into the physical
restart file(s). Once the separation is done we actually don’t need to have the so-called “initial dataset” for
the model. For fvcore, there shouldn’t be any difference between an “initial run” and a “restart run”. We can
eliminate the code segment in routine “stepon” for the fucore initialization run (nstep=0 case).

The array t3 can also be eliminated from the codes. It is redundant when fucore is used. The thermo-
dynamic variable for fucore is the potential temperature (pt in the code).

There are also duplicated 3D arrays in phys_state and phys_tend (eg, pint, pdel, omga, etc) when
fvcore is used.

1.3 Dynamics-Physics interface

It is unclear if the introduction of the “phys_state” and “phys _tend” data structure made the interface
cleaner and more efficient. [Max Suarez/GESO-GCM uses a similar idea. Tt is cleaner looking. But I don’t
know if it would help produce a cleaner code]. We can also introduce a data structure for the dynamics
to make the interface even more abstract and cleaner looking. But we don’t know the impact to the
computational efficiency.

For fvcore, we believe for optimal computational efficiency, we probably should combine“d _p _coupling”
with “tphysbc” into a single routine which we may call“d _p_ bc” (before coupling) where the mapping from
the Lagrangian to the Eulerian (ETA) coordinate can also be performed. This will save some 3D to 3D data

copying/transposition and reduce the QPENMP overhead. [This is what we did in the NASCAR model].
After “d_p_ bc” is called we then call the LSM/ocean models, which is then followed by a “p_d_ac”,
which is a combination of tphysac and “p__d_ coupling”.

1.4 Code consolidation

Currently there are many cases of nearly identical code for all three dycores in CCM3_11_XX. Perhaps
not all cores will make it into CAM (aka, CCM4), but an effort has to be made to consolidate codes. This
requires consensus, which is always challenging to achieve. There will always be code with is core-specific.
This can be localized. Example: there were some deficiencies with the SPMDINIT routine for fucore.
The current solution (having an fvcore-specific SPMDINI routine) is not necessary. There should be a
global SPMDINIT routine which calls a dycore-specific initialization routine, e.g., SPMDINIT _LR,
SPMDINIT _EUL, etc.. Of course, one may question the wisdom of supporting three dynamical cores.

1.5 Exception handling (W. Sawyer)

Exceptions as such are not supported in F90/95 (like they are in Java, for example), but we need more
solid ways to isolate errors. Lately there have been many complaints that "LR does not work", but it is
very difficult to determine the problem because information is lacking. Of course, this leads into the whole
discussion of testing. Things are currently going in the right direction: everyone is slowly getting access to
all platforms, and the test scripts appear to be converging.

For data assimilation system, there should exist no “stop” statement anywhere in the code (DaSilva). An
error code should be returned instead.

1.6 Inline documentation (W. Sawyer)

We recommend that there be a way to document code, create implementation documents in HTML and /or
BTEX. Arlindo Dasilva’s "protex” is a very good example. (Contact W. Sawyer and/or A. DaSilva for
details).

2 Calendar and update of prognostic variables

This issue has been beaten to death, many times. But it has yet to be done. It is absolutely critical for
dats assimilation and NWP applications that the model’s calendar be capable of handling leap years. The
calendar itself, the initialization of the land model as well as other physics packages should not depend on
“nstep”, which could be dynamics dependent.

Currently (ccm3.11.37) the update of prognostic variables is still incorrect (off by one hour) when the
finite-volume dynamics is used. To cleanly fix this problem we first need to have new calendar code(s),
removing the “nstep” dependency from the lsm and all physics.

3 I/0O System

There are simply too much I./O activities in the CCM. Calls to mswrite are currently executed in an asyn-
chronous mode via ioFileMod. For a run with 6-hour output frequency (minimum for data assimilation),
there may be 5+ individual mswrite processes concurrently. This will require more processors in a queue
system (eg, PBS) than total number of physical CPUs allocated. We have found this is one of the main reason
the model does not scale on DAO’s SGI. It would be critical to the throughput that the calls to mswrite be
reduced as much as possible. This should be easily achivable by calling it less frequent but increasing the
file size. Perhaps the model can already do this. But there is no up to date documentation.

Currently the logic for I/O is too messy and too difficult to understand and modify. A new design is
called for. All the I/O needs to be abstracted away to perhaps a separate library/module like GFIO or
GPIOS (e.g., DAO’s design for 1/O for MP-GEOSGCM,; ref: A. Dasilva).

3.1

3.3

Boundary conditions (S. Nebuda)
For data assimilation, there is a need to separate SST from Sea Ice.

Allow arbitrary frequency of data for SST, Sea Ice and Ozone. Example: monthly, weekly, and non-
uniform.

Make climatology or cyclic data format consistent, either the year information in the metadata is
ignored or must be zero.

SST and Ozone currently use opposite standards.

The time interpolation code(s) must support a leap year calendar.

Initial/restart files
Separate dyn _fields from the phys_fields in the restart.

Specifiable frequency (from namelist) for writing restarts (dyn, phys, lsm). For example, writing
restarts every 6 or 12 hr in data assimilation or NWP applications.

Restart program should check if the rpointer files and restart files have the same date. Because
rpointer files are written earlier than the restart files, this might cause problems if computer crashed
and resubmitted the job at this point.

Should reduce the files needed for restart run, Currently, it needs almost all of the files (ccmr_*,
ccmr_*.A, Ismr, ha, hb, ete.).

No need to keep the initial run files (ccmi and Ismi) and restart run files (ccmr and Ismr). Should
combine these files into one set of restart files.
History files

To save memory (so as to allow ultra-high-resolion NWP-type runs), use 32-bit precision for the histry
data buffer. To save mass storage space, the output history files should be 32-bit precision or even less.

Change the file names of daily and 6-hourly history files (ha***.nc and hb***.nc) to include time/date
information. Currently it is very difficult to figure out which date it is.

If we want to put one month of data into “ha” and “hb” files. the number of data should change
according to the number of day of each month. Currently it is fixed (30 for ha and 120 for hb).

Allow variable number of records in each output history file.

Do not require the existence of an output history file to continue a restart run (lsmh and ha, hb even
monthly means). Warn the user instead or tag files as incomplete.

Review diagnostic names and/or descriptions, have enough diagnostics to compute temperature and
water vapor budgets.

Add 2m and 10m winds and temperature, surface albedo, clear sky heating rates. These are required
diagnostics for data assimilation/re-analyses.

4 Parallel framework (W. Sawyer)

We need a general parallel framework (e.g., Sawyer’s pilgrim communication library; see dir dynamics/Ir)
that can hide explicit MPI calls from the science developers. The initial difficulty in implementing the
messaging passing version of the fvcore into CAM is mostly due to the limitation of the primitive MPI calls
in the CAM.

Similar to the I/O, complex message passing tasks should be abstracted away from the code. We realize
this is controversial, and a common opinion is that calls to generic MPI routines maybe general enough, so
why not just put MPI calls right into the code? Here two examples: J. Rosinski’s initial reaction to solving
the equal distribution limitation was to say "there are calls to MPI_GATHER in a lot of places which 14
have to be changed". If a standardized routine had been used (like "Gather" or "GatherAndWrite") it Uoﬁf‘f
would not have been an issue. Second example: certain camps have been emphasizing other message-passing - ﬂa}“‘(f'"'
technologies, e.g., shared memory “arenas” or the so-called Multi-Level Parallelism (MLP, Taft 2000). This i
may or may not be the way to go, but it is very hard to impossible to use another technology if lots of MPI _, fim s~
calls are strewn through the code. W

5 Utilities
5.1 Grid to grid interpolation/mapping

o There is a need for a utility code to interpolate/map lsm restarts from one horizontal grid to another.

e« DAO (S.-J. Lin) can provide a conservative and high order accurate mapping utility codes for trans-
forming dynamic restart file to different vertical /horizontal resolutions.

5.2 Model scripts and environment variables (B. Shen)

The "test-model.pl’ and its super classes are very usefulfor model testing. Especially, they also provide lots e
of information which were not discussed in the current'User’s guide. Soéog(st% st-modelplcan poxfe
Fopaindor Lasts: dA2) Perturtmttempndor LR, EUL te
very helpful% we have a more user-friendly interface, which aléwsqusgfoccfo% Gox Gheve tests with
a specific dynamics only. This can save time during the developing stage, s‘l"n’&% could test the model
without re-running all cases for minor modifications. .

Comparison tests among OMP only, SPMD only and Hybrid OMP/SPMD runs should f§j be included in
the test scripts.

On DAO SGI platforms, environment variables _DSM_PLACEMENT in the scripts should be set
to FIRST _TOUCH for better performance when the fvcore is chosen.

5.3 Makefiles

o It is highly desirable if -O3 can be used on the SGI to compile the full model. In addition, fast_math _library
can be used to speed up the model. Combined with the FIRST _TOUCH environment variable men-
tioned above we found that the model can be up to two times faster when using 32-CPU on the SGIL

» DAO could help modify the Makefile in order to run the model on Linux box with the Lahey/Fujitsu
F95 compiler, which appears to be a more robust and stricter compiler than the one on the SGI or the
pgf90 on the Linux.

6 Documentations

The current CCM3 user’s guide has been useful in guiding us to run the CCM3 model on DAO platforms.
However, there is some critical information deserved to be updated or added in the new version. For example,

1. The usage of _etn/{y__ ej ﬂ WM his is very helpful to perform a test
run, since it C&J uce /0 endoukly.

4

2. More detailed description in the naming of the outputs will be helpful for model developers as well as
users. So far, we have problems knowing which files will be created and which files will be needed for
restart runs when different namelists are used.

3. The mechanisms in the scripts (test-model.pl) used to test the model need be addressed. A brief
discussion on how to diagnose the outputs of the perturbation test from test-model.pl will be very
helpful.

We need a up to date full description of all the namelist variables. Since this is a community model
to be developed by the community, it may also be very useful to have a developer’s guide. A developer’s
workshop could also be very helpful.

7 Data assimilation specific requirements (A. DaSilva)

7.1 There must be a leap-year capable calendar in the model
7.2 The dynamics restart should be separated from the physics

7.3 The I/O efficiency must be improved

For DAO applications, the main parallel bottleneck of the current model appears to be I/0. It is critically
important that the I/O handling be more efficient. There appears to be too many open/close operations
when the data frequency is 6-hr.

The file formats (netcdf, hdf, grib, etc) should be abstracted out of the code. GFIO is DAQ’s solution to
this problem, but this is not the only solution. Other constraint is that there should be no STOP statement
whatsoever in the code. Rather, the system should terminate with well defined (and documented) return
codes - this is crucial in an operational environment.

7.4 Scripts

The data assimilation system uses its own scripts. The main requirement is that the f90 code should name
its own files (no write to generic fortran unit) and be able to handle GrADS templates for file names, e.g.,
d_rst.%y4%m2%d2_ %h2Z.bin (DaSilva). File name conventions shall not be hardwired in the code but
rather namelist /resource file specified. Also, output files should be GrADS readable. At the architectural
level, the system should have well defined (and separate) building, experiment setup, and running steps
(sources shall not be required to run the model). Scripts should be governed by the same rules of abstraction
and modularity as the f90 code; perl or phython should be used in place of csh.

