Math340: Programming in Mathematics

Instructor: Dr. Bo-Wen Shen

Email: sdsu.math340.shen@gmail.com

Web: http://bwshen.sdsu.edu

Lecture #12a:

Symbolic Mathematics in Python (SymPy) for Computational Algebra

Department of Mathematics and Statistics

San Diego State University

Spring 2025

Dr. Bo-Wen Shen (sdsu.math340.shen@gmail.com)

San Diego State University, Spring 2025

III-Conditioning: An Example

An Ill-Conditioned System

You may verify that the system

condition #: 2.0001E4 (20,001)

0.9999x - 1.0001y = 1

$$x - y = 1$$

The solution is:

$$(x, y) = (0.5, -0.5)$$

has the solution x = 0.5, y = -0.5, whereas the system

$$0.9999x - 1.0001y = 1$$

$$x - y = 1 + \epsilon$$

has the solution $x = 0.5 + 5000.5\epsilon$, $y = -0.5 + 4999.5\epsilon$. This shows that the system is ill-conditioned

The solution is:

$$(x, y) = (0.5, -0.5) + (5000.5\epsilon, 4999.5\epsilon)$$

 $\epsilon = 1e - 4$ can change the answer significantly.

(Kreyszig, 2011)

Basic Python Functions for Linear Algebra

Basic Linear Algebra

NumPy contains the linalg module for:

- Solving linear systems
- Computing the determinant of a matrix
- Computing the inverse of a matrix
- Computing eigenvalues and eigenvectors of a matrix
- Solving least-squares problems
- Computing the singular value decomposition of a matrix
- Computing the Cholesky decomposition of a matrix

Conaider the following system, which is ill-conditioned:

$$0.9999x - 1.0001y = 1$$

$$x - y = 1$$
.

Express the above system in a matrix form:

$$A = \left[egin{array}{cc} 0.9999 & -1.0001 \ 1 & 1 \end{array}
ight]; \quad b = \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$

$$Aec{x}=b; \;\;\; ec{x}=\left[egin{array}{c} x\ y \end{array}
ight]$$

Solving the above yields the following:

$$\vec{x} = A^{-1}b$$

$$\vec{x} = (x, y) = (0.5, -0.5)$$

Linear Algebra (LA) in numpy and sympy

np.linalg.solve

sympy.solve_linear_system

```
In [1]: import numpy as np
A = np.array([[0.9999, -1.0001], [1, -1]])
b = np.array([1, 1])
x = np.linalg.solve(A, b)
print(x)
[ 0.5 -0.5]
```

What does the condition number tell us?

- A large condition number indicates that the matrix is ill-conditioned, meaning small changes in the input can lead to large changes in the output. This can cause problems in numerical computations, such as solving linear systems or inverting matrices.
- A small condition number indicates that the matrix is well-conditioned, meaning it is more stable for numerical operations.

Ill-conditioning, Sensitivities, & Hallucination

- A large condition number indicates ill-conditioning, which implies (numerical) sensitivity.
- The condition number $\kappa(C)$ is is defined in terms of norm of the matrix C:

$$\kappa(C) = \|C\| \|C^{-1}\|$$

here ||C|| represents the matrix form of C. It can be written as follows:

$$\kappa(C) = \left| \frac{\lambda_{max}}{\lambda_{min}} \right|$$
 λ : eigenvalue

- Based on the analysis of conduction numbers, Shen et al. (2022a) showed that the Lorenz 1969 multiscale system is ill-conditioning. Such a feature is referred to as the 3rd kind of butterfly effect.
- Since the condition number is defined as the ratio of the largest to the smallest eigenvalue, systems with very large matrices (such as the attention matrix) may have a wide range of eigenvalues, leading to illconditioning.
- We hypothesize that ill-conditioning may occur in large language models, potentially contributing to hallucinations.

```
In [2]: #import numpy.linalg as LA
        eigen=np.linalg.eig(A)
        eigen val=eigen[0]
        print(eigen val)
        print(np.linalg.cond(A))
       [-5.e-05+0.01414205j -5.e-05-0.01414205j]
       20000.000049995837
In [3]: U, S, Vh = np.linalg.svd(A)
        print(S)
        print(S[0]/S[1]) #lagest singular value/smallest singular value
       [2.00000000e+00 9.9999999e-05]
       20000.000049995837
In [4]: from sympy import Matrix, Symbol, solve linear system
        x = Symbol('x')
        y = Symbol('y')
        system = Matrix (([0.9999, -1.0001, 1.0],\
```

[1.0, -1.0, 1.0])

{x: 0.500000000000000, y: -0.500000000000000}

sol=solve linear system(system, x, y)

print (sol)

Now, we consider the following system with a tiny perturb

$$0.9999x - 1.0001y = 1$$

$$x-y=1+\epsilon$$

Once again, we express the above system in a matrix form

$$A = egin{bmatrix} 0.9999 & -1.0001 \ 1 & 1 \end{bmatrix}; \quad b = egin{bmatrix} 1 \ 1 + \epsilon \end{bmatrix}$$

$$Aec{x}=b; \;\;\; ec{x}=\left[egin{array}{c} x \ y \end{array}
ight]$$

Solving the above yields the following:

$$\vec{x} = A^{-1}b$$

$$\vec{x} = (x, y) = (5000.5 \epsilon + 0.5, 4999.5 \epsilon - 0.5)$$

 $\{x: 5000.50000000055*e + 0.5, y: 4999.50000000055*e - 0.5\}$

Solve a Boundary Value Problem (see Details in Lecture #11)

Consider the following 2nd-order ODE with two boundary conditions:

$$rac{d^2y}{dt^2}=4y; \quad y(0)=1.1752; \quad y(1)=10.0179$$

Applying a finite difference method, we obtain the following system in a matrix form:

$$Ax = b$$
,

$$A = egin{bmatrix} -2.25 & 1.0 & 0 \ 1.0 & -2.25 & 1 \ 0 & 1.0 & -2.25 \end{bmatrix};$$
 $b = egin{bmatrix} -1.1752 \ 0 \ -10.0179 \end{bmatrix}$

$$or \ b^T = (-1.1752, 0, 10.0179).$$

Below, we illustrate how to apply solve_linear_system to compute the solution to the above system.

```
from sympy import Matrix, Symbol, solve_linear_system x = \text{Symbol}('x') y = \text{Symbol}('y') z = \text{Symbol}('z')

A b system = Matrix (([-2.25, 1.0, 0.0, [ 1.0, -2.25, 1.0, 0.], [ 0.0, 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 1.0, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [ 1.0, -2.25, 0.], [
```

{x: 2.14670657596372, y: 3.65488979591837, z: 6.07679546485261}

Numerical Results for the Example

$$\frac{d^2y}{dt^2} = 4y y(0) = 1.1752 y(1) = 10.0179$$

	t	Х	numerical	analytical	error
	0	1.0	(1.1752)	1.1752	n/a
X	0.25	1.5	2.1467	2.1293	-0.0174
Υ	0.50	2.0	3.6549	3.6269	-0.0280
Z	0.75	2.5	6.0768	6.0502	-0.0266
	1.0	3.0	(10.0179)	10.0179	n/a

Below, we illustrate the advantage of symbolic computing by adding a tiny perturbation into the boundary condition as follows:

$$rac{d^2y}{dt^2} = 4y; \quad y(0) = 1.1752 + {m \epsilon}; \quad y(1) = 10.0179$$

Applying a finite difference method, we obtain the following

$$Ax = b$$

$$A = \begin{bmatrix} -2.25 & 1.0 & 0 \\ 1.0 & -2.25 & 1 \\ 0 & 1.0 & -2.25 \end{bmatrix}; \quad b = \begin{bmatrix} -1.1752 + \epsilon \\ 0 \\ 10.0179 \end{bmatrix}$$

Below, we solve the above system using solve_linear_system again.

```
from sympy import Matrix, Symbol, solve_linear_system x = \text{Symbol}('x') y = \text{Symbol}('y') z = \text{Symbol}('z') e = \text{Symbol}('e') A b system = Matrix (([-2.25, 1.0, 0.0, [1.0, -2.25, 1.0, 0.], -1.1752-e], [0.0, 1.0, -2.25, 1.0, -10.0179])) #print (system)

#print (system)

sol=solve_linear_system(system, x, y, z)

print (sol)
```

```
In [5]: from sympy import Matrix, Symbol, solve_linear_system
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
```

```
e = Symbol('e')
system = Matrix (([-2.25, 1.0, 0.0, -1.1752-e],\
                [ 1.0, -2.25, 1.0, 0.],\
                 [0.0, 1.0, -2.25, -10.0179])
sol=solve_linear_system(system, x, y, z)
print (sol)
```

{x: 0.589569160997732*e + 2.14670657596372, y: 0.326530612244898*e + 3.65488 979591837, z: 0.145124716553288*e + 6.07679546485261}

$$egin{aligned} rac{\partial^2 u}{\partial x^2} &= f(x) \ f(x_i) &= f_i \ rac{\partial^2 u}{\partial x^2} &pprox rac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2} \ rac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2} &= f_i \end{aligned}$$

backup

```
In [3]: from sympy import Matrix, Symbol, solve_linear_system
        x = Symbol('x')
        y = Symbol('y')
        e = Symbol('e')
        system = Matrix (([0.9999, -1.0001, 0.0],\
                         [1.0, -1.0, 0.0+e])
        sol=solve_linear_system(system, x, y)
        print (sol)
```

{x: 5000.50000000055*e, y: 4999.50000000055*e}

```
In []:
```