Math340: Programming in
Mathematics

Instructor: Dr. Bo-Wen Shen
Email: sdsu.math340.shen@gmail.com

Web: http://bwshen.sdsu.edu
Lecture #12a:

Symbolic Mathematics in Python (SymPy)
for Computational Algebra

Department of Mathematics and Statistics
San Diego State University

Spring 2025

Dr. Bo-Wen Shen San Diego State University,
(sdsu.math340.shen@gmail.com) Spring 2025

an example for ill-conditioning systems

llI-Conditioning: An Example

An Ill-Conditioned System condition #: 2.0001E4
You may verify that the system (20!001)

0.9999x — 1.0001y = 1

X — y=1

The solution is: (x,y) = (0.5,-0.5)

has the solution x = 0.5,y = —0.5, whereas the system
0.9999x — 1.0001y =1
X = y=1+e€

has the solution x = 0.5 + 5000.5¢, y = —0.5 + 4999.5¢. This shows that the system is ill-conditioned

The solution is: (x,y) = (0.5,—-0.5) + (5000.5¢,4999.5¢)

€ = 1le — 4 can change the answer significantly. (Kreyszig, 2011)

Basic Python Functions for Linear Algebra

Basic Linear Algebra

NumPy contains the linalg module for:
® Solving linear systems
® Computing the determinant of a matrix
¥ Computing the inverse of a matrix
® Computing eigenvalues and eigenvectors of a matrix
® Solving least-squares problems
® Computing the singular value decomposition of a matrix
® Computing the Cholesky decomposition of a matrix

Conaider the following system, which is ill-conditioned:
0.9999x — 1.0001y =1,

x—1y=1.

Express the above system in a matrix form:

A 0.9999 —1.0001]. b—[1]

1 1 ’

Solving the above yields the following;:
z=A"b
r = (z,y) = (0.5,—0.5)

Linear Algebra (LA) in numpy and sympy

np.linalg.solve

sympy.solve_linear_system

import numpy as np

A = np.array([[0.9999, -1.0001], [1, -111)
b = np.array([1, 1])

x = np.linalg.solve(A, b)

print(x)
[0.5 -0.5]

What does the condition number tell us?

e A large condition number indicates that the matrix is ill-conditioned , meaning small
changes in the input can lead to large changes in the output. This can cause
problems in numerical computations, such as solving linear systems or inverting
matrices.

e A small condition number indicates that the matrix is well-conditioned, meaning it is
more stable for numerical operations.

lll-conditioning, Sensitivities, & Hallucination

« Alarge condition number indicates ill-conditioning, which implies
(numerical) sensitivity.

* The condition number x(C) is is defined in terms of norm of the
matrix C:

k(€)= lIcllcII
here ||C|| represents the matrix form of C. It can be written as follows:
Anax A

K(C) = Amin eigenvalue

+ Based on the analysis of conduction numbers, Shen et al. (2022a)
showed that the Lorenz 1969 multiscale system is ill-conditioning. Such
a feature is referred to as the 3" kind of butterfly effect.

» Since the condition number is defined as the ratio of the largest to the
smallest eigenvalue, systems with very large matrices (such as the
attention matrix) may have a wide range of eigenvalues, leading to ill-
conditioning.

* We hypothesize that ill-conditioning may occur in large language
models, potentially contributing to hallucinations.

#import numpy.linalg as LA
eigen=np.linalg.eig(A)
eigen_val=eigen[0]
print(eigen_val)
print(np.linalg.cond(A))

[-5.e-05+0.01414205]j -5.e-05-0.01414205j1]
20000.000049995837

U, S, Vh = np.linalg.svd(A)
print(s)
print(s[0]1/S[1]) #lagest singular value/smallest singular value

[2.00000000e+00 9.99999999e-05]
20000.000049995837

from sympy import Matrix, Symbol, solve_linear_system

X = Symbol('x")

y = Symbol('y")

system = Matrix (([0.9999, -1.0001, 1.0],\
[1.0, -1.0, 1.0]1))\

sol=solve_linear_system(system, x, y)

print (sol)
{x: 0.500000000000000, y: —0.500000000000000}

Now, we conaider the following system with a tiny pertur]
0.9999x — 1.0001y =1

T—y=1+e¢€

Once again, we express the above system in a matrix form

A

~10.9999 —1.0001]. b—[1]
1 1

Solving the above yields the following:
z=A"b

7 = (x,y) = (5000.5¢ + 0.5, 4999.5¢ — 0.5)

from sympy import Matrix, Symbol, solve_linear_system
X = Symbol('x")
y = Symbol('y")
e = Symbol('e")

system = Matrix (([0.9999, -1.0001, 1.0],\
[1.0, -1.0, 1.0+e]l))\

sol=solve_linear_system(system, x, y)

print (sol)
{x: 5000.50000000055%e + 0.5, y: 4999.50000000055*%e — 0.5}

Solve a Boundary Value Problem (see Details
in Lecture #11)

Consider the folowing 2nd-order ODE with two
boundary conditions:

dy

o 4y; y(0) = 1.1752; y(1) =10.0179

Applying a finite difference method, we obtain the
following system in a matrix form:

Az = b,
—2.25 1.0 0
A= 1.0 —2.25 1 ;
0 1.0 —2.25
—1.1752
b= 0
—10.0179

or b' = (—1.1752,0,10.0179).

Below, we illustrate how to apply solve_linear_system
to compute the solution to the above system.

from sympy import Matrix, Symbol, solve_linear_system

x = Symbol('x")
y = Symbol('y")
z = Symbol('z")
A b
-~ N [™

system = Matrix ((-2.25, 1.0, 0.0, -1.1752, AV = b

[1.0,-2.25, 1.0, 0],

'[0.0, 1.0, -2.25, -10.0179])
AN / \ J

#print (system)

sol=solve_linear_system(system, X, y, z)

print (sol)

from sympy import Matrix, Symbol, solve_linear_system

X = Symbol('x")
y = Symbol('y")
z = Symbol('z")

system = Matrix ((55 1.0, 0.0, -1.1752]1,\

[-2.2
[1.0, -2.25, 1.0, 0.1,\
[0.0, 1.0, -2.25, -10.0179]))

sol=solve_linear_system(system, x, y, z)

print (sol)
{x: 2.14670657596372, y: 3.65488979591837, z: 6.07679546485261}

Numerical Results for the Example

% = 4y y(0) = 1.1752 y(1) = 10.0179
t X numerical analytical error
0 1.0 (1.1752) 1.1752 n/a
x 025 1.5 2.1467 2.1293 -0.0174
Y 050 2.0 3.6549 3.6269 -0.0280
Z 075 25 6.0768 6.0502 -0.0266
1.0 3.0 (10.0179) 10.0179 n/a

Below, we illustrate the advantage of symbolic
computing by adding a tiny perturbation into the
boundary condition as follows:

dy
e = 4y; y(0) =1.1752 +¢; y(1) =10.0179

Applying a finite difference method, we obtain the followi

Az =0
—2.25 1.0 0 —1.1752 + ¢
A= 1.0 —2.25 1 . b= 0
0 1.0 —2.25 10.0179

Below, we solve the above system using
solve_linear_system again.

from sympy import Matrix, Symbol, solve_linear_system

X = Symbol('x')
y = Symbol('y")
z = Symbol('z')
e = Symbol(’e") A b
4 N N —p
system = Matrix ((}-2.25, 1.0, 0.0, -1.1752-¢], Ay =
1.0, -2.25, 1.0, 0.,
' [0.0, 1.0,-2.25,-10.0179]))
#print (system) - / N\ /

sol=solve_linear_system(system, X, y, z)

print (sol)

from sympy import Matrix, Symbol, solve_linear_system
X = Symbol('x")
y = Symbol('y")
z = Symbol('z")

e = Symbol('e")

5 1.0, 0.0, -1.1752-e],\
’ _2-25’ 1-0’ 0-]’\
, 1.0, -2.25, -10.0179]))

system = Matrix (([-2.

sol=solve_linear_system(system, x, y, z)

print (sol)

{x: 0.589569160997732xe + 2.14670657596372, y: 0.326530612244898%e + 3.65488
979591837, z: 0.145124716553288%e + 6.07679546485261}

0%u
922 ()

f(zi) = fi

0*u wit1 — 2u; + Ui

0z? (Ax)?
Uip1 — 2 + Ui F
— Ji
(Az)?

backup
from sympy import Matrix, Symbol, solve_linear_system
X = Symbol('x")
y = Symbol('y")
e = Symbol('e")

system = Matrix (([0.9999, -1.0001, 0.0],\
[1.0, -1.0, 0.0+e]))\
sol=solve_linear_system(system, x, y)

print (sol)
{x: 5000.50000000055%e, y: 4999.50000000055*e}

