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• The dimensions of Q, K, and V are determined by the current number of 
tokens and the model’s embedding size. 

• Once the new token is generated, the autoregressive procedure 
appends it to the end of the input sequence, and the transformer layers 
repeat the matrix calculation for the next token. 

• A mathematical analysis reveals that the new token introduces a new 
query, key, and value vector, appended to Q, K, and V, respectively.

• Appending these new vectors to the K and V matrices is sufficient for 
calculating the next token prediction. 

• Consequently, storing the current K and V matrices in memory saves 
time by avoiding the recalculation of the attention matrix. 

• This feature is known as K-V caching. 
• This technique effectively reduces computational cost during inference.
• Please refer to Wikipedia article: DeepSeek to additional information.

K-V Caching (Wikipedia, BWS)
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K-V Caching
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Time step = 1
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Raw Attention Scores
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Time step = 2
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Raw Attention Scores
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Revisit: Time step = 2
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K-V Caching
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K-V Caching
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K-V Caching

where only the blue-circled last row and green-circled last column are newly
computed, and the 4 × 4 block at the upper-left is reused from !𝐴(").
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• In autoregressive next-token prediction, we apply a causal mask 
to the attention matrix !𝐴, zeroing out (by assigning −∞ logits) 
every entry above the main diagonal—that is, the “upper” 
triangle that would correspond to attending to future tokens.

• What remains after masking is the lower-triangular portion
• (including the diagonal), so there’s no need to compute the 

green-circled last column.

K-V Caching


