MATH 252 --- Calculus III Spring 2025

Instructor: Bo-Wen Shen, Ph.D.

Lecture #25:

Sections 16.3

The Fundamental Theorem for Line Integrals

sdsu.math252.shen@gmail.com

Department of Mathematics and Statistics
San Diego State University

Supplemental Materials

The supplemental materials with a summary in Table 1 are provided to help students review the following topics:

- (1) vector fields; (2) gradient and normal vector; (3) curl and circulation;
- (4) divergence and flux; (5) line integrals; (6) double integrals;
- (7) fundamental theorem of line integrals;
- (8) conservative fields and independence of path;
- (9) Green's theorem in both the tangential and normal forms;
- (10) a comparison amongst Green's, Stokes' and Divergence theorems.

Learning Outcomes

Formulas for Grad, Div, Curl, and the Laplacian

	Cartesian (x, y, z) i, j, and k are unit vectors in the directions of
	increasing x , y , and z . P, Q, and R are the
	scalar components of
	F(x, y, z) in these
	directions.
Gradient	$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$
Divergence	$\nabla \cdot \overrightarrow{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$
Curl	$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{P} & \mathbf{Q} & \mathbf{R} \end{vmatrix}$
Laplacian	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

The Fundamental Theorem of Line Integrals

1. Let $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ be a vector field whose components are continuous throughout an open connected region D in space. Then there exists a differentiable function f such that

$$\mathbf{F} = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

if and only if for all points A and B in D the value of $\int_A^B \mathbf{F} \cdot d\mathbf{r}$ is independent of the path joining A to B in D.

2. If the integral is independent of the path from *A* to *B*, its value is

$$\int_{A}^{B} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A).$$

Curl & Divergence (2D Version)

Curl:

"a Cross product of ∇ and F"

$$\nabla \times \vec{F} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P(x, y) & Q(x, y) & 0 \end{vmatrix}$$

$$\nabla \times \vec{F} = k(Q_x - P_y)$$

Divergence:

"a Dot product of ∇ and F"

$$\nabla \cdot F = P_x + Q_y$$

5 3 1 convergence

16.3 The Fundamental Theorem for Line Integrals

We will discuss the following topics:

- anti-derivative vs. potential function;
- how to find the f of $\nabla f \rightarrow$ Find a potential function f;
- Independence of path (for line integrals);
- conservative property (for vector fields).

For Mid Term II

One Formula Summary for Sections 14.4 – 14.8

$$(14.4) df = f_x dx + f_y dy = \nabla f \cdot d\vec{r}$$

total differential

calc I:
$$\frac{df(x)}{dx} = f'(x) = f_x$$

$$df = f'(x)dx = f_x dx$$

calc III:
$$df(x, y) = f_x dx + f_y dy$$

16.2 Line Integrals → Section 16.3

$$\vec{F} = (P, Q, R)$$

$$\mathbf{W} = \int_C \mathbf{F} \cdot \mathbf{T} \, ds$$

$$= \int_C \mathbf{F} \cdot d\mathbf{r}$$

$$= \int_{a}^{b} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt$$

$$= \int_{a}^{b} \left(P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right) dt$$

$$= \int_{a}^{b} Pdx + Qdy + Rdz$$

$$\vec{T}$$
 tangent vector $\mathbf{T}(t) = \mathbf{r}'(t)/|\mathbf{r}'(t)|$

The definition

Vector differential form

Parametric vector evaluation

Parametric scalar evaluation

Scalar differential evaluation

Section 16.3 ("anti-derivative")

16.3 Anti-derivative vs. Potential Function

$$\frac{dG}{dx} = G'(x) \qquad \Rightarrow dG = G_x(x)dx$$

$$\Rightarrow G_x dx = dG$$

G: "anti-derivative"

$$\Rightarrow \int_{a}^{b} G_{x}(x)dx = \int_{a}^{b} dG = G(b) - G(a)$$

2 Variables $df = f_x dx + f_y dy = \nabla f \cdot d\vec{r}$

$$\Rightarrow \nabla f \cdot d\vec{r} = df$$

 $\Rightarrow \nabla f \cdot d\vec{r} = df$ f: "potential function"

$$\Rightarrow \int_{a}^{b} \nabla f \cdot d\vec{r} = \int_{a}^{b} df = f(b) - f(a)$$

16.3 The Fundamental Theorem for Line Integrals

The Fundamental Theorem of Calculus

1 Variable
$$\int_a^b G'(x)dx = G(b) - G(a)$$
 The Net Change Theorem

- The integral of a rate of change (G') is the net change.
- The Fundamental Theorem for Line Integrals:
 - Theorem Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

2 or 3 Variables
$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) = f(x_{2}, y_{2}, z_{2}) - f(x_{1}, y_{1}, z_{1})$$

• The line integral of ∇f is the net change.

$$df = f_x dx + f_y dy$$
 The total differential of a function f

Example: Find a Potential Function

1 Variable
$$\frac{dG}{dx} = G'(x)dx \Rightarrow dG = G_x(x)dx$$

$$G_{x}=2x$$

$$G = x^2$$
: "anti-derivative"

$$\Rightarrow \int_{a}^{b} 2x \, dx = G(b) - G(a) = b^2 - a^2$$

2 Variables $df = f_x dx + f_y dy = \nabla f \cdot d\vec{r}$

$$\nabla f = (2x, 2y)$$
 f ?:

$$\Rightarrow \int_{a}^{b} \nabla f \cdot d\vec{r} = \int_{a}^{b} df = f(b) - f(a)$$

Integration "Constants"

$$f = f(x)$$

$$g = g(x, y)$$

$$f_x = 2x$$

$$g_x = 2x$$

$$f(x_i) = x^2 + C$$

$$f(x,) = x^2 + C$$
 $g(x, y) = x^2 + K(y)$

Verify

Verify

$$f_x = 2x$$

$$g(x, \mathbf{y})_{x} = 2x$$

Keep y as a constant

Example: Find a Potential Function

$$\nabla f = (2x, 2y) \qquad f?:$$

$$f_x = 2x \qquad f_y = 2y$$

$$f = x^2 + g(y) \qquad g_y(y) = 2y$$

$$f = x^2 + g(y) \qquad g(y) = y^2 + C$$

$$f = x^2 + y^2 + C$$

Example: Anti-derivative vs. Potential Function

2 Variables
$$df = f_x dx + f_y dy = \nabla f \cdot d\vec{r}$$

$$\nabla f = (2x, 2y) \qquad f = x^2 + y^2 + C \qquad \text{point } b: (k, l)$$

$$\Rightarrow \int_a^b \nabla f \cdot d\vec{r} = \int_a^b df = f(b) - f(a) = k^2 + l^2 - i^2 - j^2$$

Summary: Anti-derivative vs. Potential Function

1 Variable
$$\frac{dG}{dx} = G'(x)dx \Rightarrow dG = G_x(x)dx$$

$$G_x = 2x$$

$$G=x^2$$
: "anti-derivative"

$$\Rightarrow \int_a^b 2x \, dx = G(b) - G(a) = b^2 - a^2$$

2 Variables $df = f_x dx + f_y dy = \nabla f \cdot d\vec{r}$

$$\nabla f = (2x, 2y)$$
 $f = x^2 + y^2 + C$

point b:(k,l)

point a:(i,j)

$$\Rightarrow \int_a^b \nabla f \cdot d\vec{r} = \int_a^b df = f(b) - f(a) = k^2 + l^2 - i^2 - j^2$$

16.3 2D vs. 3D

Theorem Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

$$\int_{c} \nabla f \cdot dr = \int_{c} df = f(b) - f(a)$$

$$df = f_{x}dx + f_{y}dy$$

The total differential of a function f

2 var
$$\int_C \nabla f \cdot d\mathbf{r} = f(x_2, y_2) - f(x_1, y_1)$$

3 var
$$\int_C \nabla f \cdot d\mathbf{r} = f(x_2, y_2, z_2) - f(x_1, y_1, z_1)$$

16.3 The Fundamental Theorem for Line Integrals Supp

Definition Let **F** be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t)$, $a \le t \le b$. Then the **line integral of F along** C is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

PROOF OF THEOREM 2

when $F = \nabla f$,

$$\int_{C} \nabla f \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} \left(\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} \right) dt$$

$$= \int_{a}^{b} \frac{d}{dt} f(\mathbf{r}(t)) dt \quad \text{(by the Chain Rule)} \qquad = \mathbf{d}f$$

$$= f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Potential Function

EXAMPLE 5 If $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + (2xy + e^{3z}) \mathbf{j} + 3ye^{3z} \mathbf{k}$, find a function f such that $\nabla f = \mathbf{F}$.

$$\nabla f = (f_x, f_y, f_z) = (y^2, 2xy + e^{3z}, 3ye^{3z})$$

$$f_x = y^2 \qquad f_y = 2xy + e^{3z} \qquad f_z = 3ye^{3z}$$

$$f = xy^2 + g(y, z) \qquad g_y(y, z) = e^{3z}$$

$$g = ye^{3z} + h(z)$$

$$f_z = 3ye^{3z} + h(z)$$

$$f_z = 3ye^{3z} + h_z(z)$$

$$h_z(z) = 0$$

$$h = K$$

$$f = xy^2 + ye^{3z} + K$$

16.3 The Fundamental Theorem for Line Integrals

EXAMPLE 1 Find the work done by the gravitational field

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3} \,\mathbf{x}$$

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0) along a piecewise-smooth curve C. (See Example 4 in Section 16.1.)

$$\mathbf{F}(x, y, z) = \frac{-mMGx}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i} + \frac{-mMGy}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{j} + \frac{-mMGz}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{k}$$

$$W = \int_C \mathbf{F} \cdot d\mathbf{r}$$

whether $F = \nabla f$?

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = \int_{a}^{b} df = f \Big|_{a}^{b}$$

16.3 The Fundamental Theorem for Line Integrals

EXAMPLE 1 Find the work done by the gravitational field

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3} \,\mathbf{x}$$

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0) along a piecewise-smooth curve C. (See Example 4 in Section 16.1.)

$$\overrightarrow{F} = (P, Q, Z) = \nabla f$$

$$\overrightarrow{F} = (P, Q, Z) = \nabla f$$

$$f = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}$$

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = \int_{a}^{b} df = f \Big|_{a}^{b}$$
$$= f(2, 2, 0) - f(3, 4, 12) = \frac{mMG}{\sqrt{2^{2} + 2^{2}}} - \frac{mMG}{\sqrt{3^{2} + 4^{2} + 12^{2}}} = mMG \left(\frac{1}{2\sqrt{2}} - \frac{1}{13}\right)$$

The work done by F along any curve joining the two points and not passing through the origin is the same. → independence of path

Revisit: Anti-derivative vs. Potential Function

1 Variable
$$\frac{dG}{dx} = G'(x)dx \Rightarrow dG = G_x(x)dx$$

$$G_{x}=2x$$

$$G=x^2$$
: "anti-derivative"

$$\Rightarrow \int_a^b 2x \, dx = G(b) - G(a) = b^2 - a^2$$

2 Variables $df = f_x dx + f_y dy = \nabla f \cdot d\vec{r}$

$$\nabla f = (2x, 2y)$$

$$\nabla f = (2x, 2y)$$
 $f = x^2 + y^2 + C$

point
$$b$$
: (k, l)

point a:(i,j)

$$\Rightarrow \int_{a}^{b} \nabla f \cdot d\vec{r} = \int_{a}^{b} df = f(b) - f(a) = k^2 + l^2 - i^2 - j^2$$

$$= f(b) - f(a) = k^2 + l^2 - i^2 - j^2$$

if and only if

Independence of paths conservative

$$\overrightarrow{F} = \nabla f$$
 on D

if and only if

$$\oint \vec{F} \cdot d\vec{r} = 0$$

$$\nabla \times \overrightarrow{F} = 0$$
 throughout D

conservative

2D:
$$\nabla \times \vec{F} = k(Q_x - P_y) = 0$$

$$\nabla \times \nabla f = 0$$

16.5: A "Meta" Vector:
$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

• Consider a "meta" vector $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$, a function f = f(x, y, z) and a vector F = (P(x, y, z), Q(x, y, z), R(x, y, z)).

We can define the following:

Gradient:

$$\nabla f = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \left(f_x, f_y, f_z\right)$$

• Curl (a Cross product of ∇ and \vec{F}):

$$\nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = (R_y - Q_z, P_z - R_x, Q_x - P_y)$$

• Divergence (a Dot product of ∇ and \vec{F}):

$$\nabla \bullet F = (P_x + Q_y + R_z)$$

16.3 Independence of Path

 $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path if $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ textbook

$$\int_{C} \vec{F} \cdot d\vec{r} \text{ is independent of path if } \int_{C_{1}} \vec{F} \cdot d\vec{r} = \int_{C_{1}'} \vec{F} \cdot d\vec{r} \text{ used (to avoid confusion)}$$

For any two paths C_1 and C'_1 in D that have the same initial point and the same terminal point, the line integrals alone C_1 and C'_1 are the same.

Can we find such a \vec{F} whose line integral is independent of path?

16.3 Independence of Path

Independence of Path

$$\int_{C} \vec{F} \cdot d\vec{r} \text{ is independent of path if } \int_{C_{1}} \vec{F} \cdot d\vec{r} = \int_{C'_{1}} \vec{F} \cdot d\vec{r}$$

Can we find such a \vec{F} whose line integral is independent of path? Recall:

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

We know that the above integral depends only on the initial point and terminal point. Therefore, the integral is independent of path, i.e.,

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_1'} \vec{F} \cdot d\vec{r}$$

When $\vec{F} = \nabla f$, the line integral of \vec{F} is independent of path.

f is called a potential function.

Closed Curve and Path Independence

TBD

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} + \int_{C_{2}} \vec{F} \cdot d\vec{r}$$

$$C_{2} : B \to A$$

$$C'_{1} : A \to B$$

$$\int_{C_{2}} \vec{F} \cdot d\vec{r} = -\int_{C'_{1}} \vec{F} \cdot d\vec{r}$$

The path independence yields:

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_1'} \vec{F} \cdot d\vec{r}$$

We have:

$$\int_{C_1} \vec{F} \cdot d\vec{r} + \int_{C_2} \vec{F} \cdot d\vec{r} = 0.$$

$$\oint \vec{F} \cdot d\vec{r} = 0$$

The line integral along a closed curve is zero.

- Find the potential function f of $\vec{F} = (P, Q)$, i.e., $\vec{F} = \nabla f$, to simplify the line integral; $f_x = P$ and $f_y = Q$.
- Define the independence of path

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_1'} \vec{F} \cdot d\vec{r}$$

Show the equivalent property:

$$\oint \vec{F} \cdot d\vec{r} = 0$$

- Define a "conservative" field using the above.
- Find a simple (math) expression to determine whether a field is conservative, $Q_x = P_y$ ($f_{yx} = f_{xy}$)

$$\nabla \times \vec{F} = k(Q_x - P_y) = 0$$

if and only if

Independence of paths conservative

$$\overrightarrow{F} = \nabla f$$
 on D

if and only if

 $\oint \vec{F} \cdot d\vec{r} = 0$

$$\nabla \times \overrightarrow{F} = 0 \text{ throughout D}$$

$$\nabla \times \nabla f = 0$$

16.3 The Fundamental Theorem for Line Integrals

Simple curve: a curve that doesn't intersect itself anywhere between its endpoints.

A simple closed curve:

$$\mathbf{r}(a) = \mathbf{r}(b)$$

$$\mathbf{r}(t_1) \neq \mathbf{r}(t_2)$$
 when $a < t_1 < t_2 < b$.

Simply-connected region: a connected region D such that every simple closed curve in D encloses only points that are in D.

regions that are not simply-connected

16.3 The Fundamental Theorem for Line Integrals

Simple curve: a curve that doesn't intersect itself anywhere between its endpoints

Simply-connected region: a connected region D such that every simple closed curve in D encloses only points that are in D

simple (no intersection)

$$\mathbf{r}(t_1) \neq \mathbf{r}(t_2)$$
 when $a < t_1 < t_2 < b$.

closed
$$\mathbf{r}(a) = \mathbf{r}(b)$$

16.3 The Fundamental Theorem for Line Integrals TBD

Independence of Path

Theorem $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

Definition $\int_{C} \vec{F} \cdot d\vec{r}$ is independent of path if $\int_{C} \vec{F} \cdot d\vec{r} = \int_{C'} \vec{F} \cdot d\vec{r}$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} + \int_{C_{2}} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} - \int_{-C_{2}} \vec{F} \cdot d\vec{r}$$

$$= \int_{C_{1}} \vec{F} \cdot d\vec{r} - \int_{C_{1}'} \vec{F} \cdot d\vec{r} = 0$$
Conversely

Conversely,

$$0 = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} + \int_{C_{2}} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} - \int_{-C_{2}} \vec{F} \cdot d\vec{r}$$

$$= \int_{C_{1}} \vec{F} \cdot d\vec{r} - \int_{C_{1}'} \vec{F} \cdot d\vec{r} \Rightarrow \int_{C_{1}} \vec{F} \cdot d\vec{r} = \int_{C_{1}'} \vec{F} \cdot d\vec{r} \text{ Independent}$$

16.3: Conservative

Theorem Suppose **F** is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$.

PROOF Let A(a, b) be a fixed point in D. We construct the desired potential function f by defining

$$\vec{F} = (P, Q)$$
 $\vec{F} = \nabla f$

$$P = \frac{\partial f}{\partial x}$$
 and $Q = \frac{\partial f}{\partial y}$

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial Q}{\partial x}$$

$$Q_x = P_y$$

$$\nabla \times \vec{F} = k(Q_x - P_y) = 0$$

 \vec{F} is conservative

$$\nabla \times \nabla f = 0$$

16.3 Conservative Vector Field: A proof

$$f(x, y) = \int_{(a, b)}^{(x, y)} \mathbf{F} \cdot d\mathbf{r}$$
 $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$

$$f(x,y) = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{(a,b)}^{(x_1,y)} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

$$\frac{\partial}{\partial x} f(x, y) = 0 + \frac{\partial}{\partial x} \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

 Because of independence of path, the integral is not function of x.

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} P \, dx + Q \, dy$$

$$\frac{\partial}{\partial x} f(x, y) = \frac{\partial}{\partial x} \int_{C_2} P \, dx + Q \, dy = \frac{\partial}{\partial x} \int_{x_1}^x P(t, y) \, dt = P(x, y)$$
• dv=0 on C₂

Similarly

$$\frac{\partial}{\partial y} f(x, y) = \frac{\partial}{\partial y} \int_{C_2} P \, dx + Q \, dy = \frac{\partial}{\partial y} \int_{y_1}^{y} Q(x, t) \, dt = Q(x, y)$$

$$\mathbf{F} = P \,\mathbf{i} + Q \,\mathbf{j} = \frac{\partial f}{\partial x} \,\mathbf{i} + \frac{\partial f}{\partial y} \,\mathbf{j} = \nabla f$$

16.3 Conservative Vector Field

Theorem If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$\nabla \times \vec{F} = k(Q_x - P_y) = 0$$

Theorem Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 throughout D

Then F is conservative.

$$\nabla \times F = 0$$

recall:
$$\nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & 0 \end{vmatrix} = (0, 0, Q_x - P_y)$$
 CCC: curl, cross product, conservative

16.3 The Fundamental Theorem for Line Integrals

Theorem Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

throughout ${\cal D}$

$$\nabla \times \vec{F} = k(Q_x - P_y) = 0$$

Then F is conservative.

EXAMPLE 2 Determine whether or not the vector field

$$(P,Q) = (x - y, x - 2)$$

$$\mathbf{F}(x, y) = (x - y)\mathbf{i} + (x - 2)\mathbf{j}$$

$$P_y = -1$$
 $Q_x = 1$

is conservative.

$$P_y \neq Q_x$$

$$P_y = 2x$$
 $Q_x = 2x$

$$\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 - 3y^2)\mathbf{j}$$

$$P_y = Q_x$$

is conservative.

Revisit: Potential Function

EXAMPLE 5 If $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + (2xy + e^{3z}) \mathbf{j} + 3ye^{3z} \mathbf{k}$, find a function f such that $\nabla f = \mathbf{F}$.

$$\nabla f = (f_x, f_y, f_z) = (y^2, 2xy + e^{3z}, 3ye^{3z})$$

$$f_x = y^2 \qquad f_y = 2xy + e^{3z} \qquad f_z = 3ye^{3z}$$

$$f = xy^2 + g(y, z) \qquad g_y(y, z) = e^{3z}$$

$$g = ye^{3z} + h(z)$$

$$f_z = 3ye^{3z} + h(z)$$

$$f_z = 3ye^{3z} + h_z(z) \qquad h_z(z) = 0$$

$$h = K$$

$$f = xy^2 + ye^{3z} + K$$

16.3 Computing Line Integrals using a Potential Function

EXAMPLE 4

- (a) If $\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$.
- (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by

$$\mathbf{r}(t) = e^t \sin t \, \mathbf{i} + e^t \cos t \, \mathbf{j} \qquad 0 \le t \le \pi$$

$$0 \le t \le \pi$$

$$P_y = 2x$$

$$Q_x = 2x$$

$$P_{\mathcal{V}} = Q_{\mathcal{X}}$$

b at $t = \pi$

 $\vec{r} = (0, -e^{\pi})$

a at t=0

 $\vec{r} = (0,1)$

$$\nabla f = (f_x, f_y) = (3 + 2xy, x^2 - 3y^2)$$

$$f_x = 3 + 2xy$$

$$f = 3x + x^2y + g(y)$$

$$f_y = x^2 + g_y$$

$$f_y = x^2 + g_y$$

$$g_y = -3y^2$$

$$g = -y^3 + K$$

$$f = 3x + x^2y - y^3 + K$$

$$\int_C \vec{F} \cdot d\vec{r} = \int_C \nabla f \cdot d\vec{r} = \int_C df = f(b) - f(a)$$

 $= f(0, -e^{\pi}) - f(0, 1) = e^{3\pi} + 1$

A Journey into the Beauty of Vector Calculus

Math 252, San Diego State University

Chapter 12

In Chapter 12, we discussed the following topics:

- a) The Inner product,
- b) The Cross product,
- c) Equations of Lines,
- d) Equations of Plane.

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

$$\overrightarrow{PX} = t\vec{v}$$

$$\overrightarrow{PX} \cdot \overrightarrow{n} = 0$$

$$projection = |\vec{b}|cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

$$height = |\vec{b}|sin(\theta) = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}|}$$

Chapter 13

A circle: x²+y²=b²

- A parameterization of the circle: **r(t)** = (bcos(t), bsin(t))
- The derivative of the vector **r** is **r'(t)** = (-bsin(t), bcos(t))
- The magnitude of **r'(t)** is $|\mathbf{r'(t)}| = \sqrt{b^2 \sin^2(t) + b^2 \sin^2(t)} = b$

The unit tangent vector is

$$\vec{T} = \frac{\vec{r}}{|\vec{r}|} = (-\sin(t), \cos(t))$$

The derivative of the unit tangent vector is

$$\vec{T} = \frac{d\vec{T}}{dt} = (-\cos(t), -\sin(t))$$

The unit normal vector is

$$\vec{N} = \frac{\vec{T}}{|\vec{T}|} = (-\cos(t), -\sin(t)) = \frac{\vec{r}}{b}$$

The curvature is $\kappa = |T'|/|r'| = 1/b$

Inner & cross products

$$\vec{r} \cdot \vec{T} = 0$$
 $\vec{T} \cdot \vec{N} = 0$ (orthogonal)

Chapter 14

One Formula Summary for Sections 14.4 - 14.8

$$(14.4) \ \mathbf{d}f = f_x dx + f_y dy = \nabla f \cdot \mathbf{d}\vec{r}$$

total differential

(14.5)
$$\frac{\mathrm{d}f}{\mathrm{d}t} = f_x \frac{\mathrm{d}x}{\mathrm{d}t} + f_y \frac{\mathrm{d}y}{\mathrm{d}t} = \nabla f \cdot \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \qquad \text{chain rule with}$$
$$x = x(t) \text{ and } y = y(t)$$

(14.6)
$$D_{u}f = (f_{x}, f_{y}) \cdot (a, b) = \nabla f \cdot \frac{d\vec{r}}{|d\vec{r}|}$$
 directional derivative $\vec{u} = \frac{\Delta \vec{r}}{|\Delta \vec{r}|}$

$$(14.7) \nabla f = 0$$

max and min

(14.8)
$$\nabla f = \lambda \nabla g$$

Lagrange multiplier

Chapter 16

Formulas for Grad, Div, Curl, and the Laplacian

Cartesian (x, y, z)

	i, j, and k are unit vectors
	in the directions of
	increasing x , y , and z .
	P, Q, and R are the
	scalar components of
	F(x, y, z) in these
	directions.
Gradient	$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$
Divergence	$\nabla \cdot \overrightarrow{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$
Curl	$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$
Laplacian	$\nabla^2 \mathbf{f} = \frac{\partial^2 \mathbf{f}}{\partial x^2} + \frac{\partial^2 \mathbf{f}}{\partial y^2} + \frac{\partial^2 \mathbf{f}}{\partial z^2}$

The Fundamental Theorem of Line Integrals

Let \$\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}\$ be a vector field whose components are continuous throughout an open connected region \$D\$ in space. Then there exists a differentiable function \$f\$ such that

$$\mathbf{F} = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial y}$$

if and only if for all points A and B in D the value of $\int_A^B \mathbf{F} \cdot d\mathbf{r}$ is independent of the path joining A to B in D.

2. If the integral is independent of the path from A to B, its value is

$$\int_{A}^{B} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A)$$

Green's Theorem (Tangential Form) $\iint_{R} \nabla \times \vec{F} \cdot \vec{k} dx dy = \oint \vec{F} \cdot d\vec{r}$ Stokes' Theorem $\iint_{S} \text{curl } \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r}$

Green's Theorem (Normal Form)

 $\iint\limits_{R} \nabla \cdot \vec{F} dx dy = \oint \vec{F} \cdot \vec{n} ds$

Divergence Theorem

 $\iiint_{E} \operatorname{div} \mathbf{F} \, dV = \iiint_{E} \vec{F} \cdot \vec{n} \, dS$

Learning Outcomes

Formulas for Grad, Div, Curl, and the Laplacian

	rad, Div, Curi, and the Eaplacian
	i, j, and k are unit vectors in the directions of increasing x, y, and z. P, Q, and R are the scalar components of $F(x, y, z)$ in these
	directions.
Gradient	$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$
Divergence	$\nabla \cdot \overrightarrow{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$
Curl	$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{P} & \mathbf{Q} & \mathbf{R} \end{vmatrix}$
Laplacian	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

The Fundamental Theorem of Line Integrals

1. Let $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ be a vector field whose components are continuous throughout an open connected region D in space. Then there exists a differentiable function f such that

$$\mathbf{F} = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

if and only if for all points A and B in D the value of $\int_A^B \mathbf{F} \cdot d\mathbf{r}$ is independent of the path joining A to B in D.

2. If the integral is independent of the path from A to B, its value is

$$\int_{A}^{B} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A).$$

Green's Theorem (Tangential Form)

$$\iint_{R} \nabla \times \vec{F} \cdot \vec{k} dx dy = \oint \vec{F} \cdot d\vec{r}$$

Stokes' Theorem

$$\iint\limits_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

Green's Theorem (Normal Form)

$$\iiint\limits_{R} \nabla \cdot \vec{F} dx dy = \oint \vec{F} \cdot \vec{n} ds$$

Divergence Theorem

$$\iiint_E \operatorname{div} \mathbf{F} \, dV = \iint \vec{F} \cdot \vec{n} \, dS$$

Green's Theorem

$$\begin{vmatrix} P & Q \\ \downarrow \downarrow & \downarrow \\ dx & dy \end{vmatrix}$$

$$\oint Pdx + Qdy = \iint \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$$

$$\begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
P(x, y) & Q(x, y)
\end{vmatrix}$$

$$\frac{\partial}{\partial x} \bigotimes \frac{\partial}{\partial y}$$

$$P(x,y) \quad Q(x,y)$$

$$= Pdx + Qdy$$

$$=Q_x-P_y$$

$$\begin{vmatrix} P & Q \\ dx & dy \end{vmatrix}$$

$$\oint Pdy - Qdx = \iint \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}\right) dxdy$$

$$\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial y}$$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \vdots & \vdots \\ P(x,y) & Q(x,y) \end{vmatrix}$$

$$= Pdy - Qdx$$

$$= P_x + Q_y$$

Green's Theorem

$$\begin{vmatrix} P & Q \\ \downarrow \downarrow & \downarrow \downarrow \\ dx & dy \end{vmatrix}$$

$$\oint \vec{F} \cdot d\vec{r} = \iint (\nabla \times \vec{F}) dx dy$$

$$\oint Pdx + Qdy = \iint \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$$

$$\frac{\partial}{\partial x} \bigotimes \frac{\partial}{\partial y}$$

$$P(x,y) \quad Q(x,y)$$

 $=Q_{x}-P_{y}$

$$= Pdx + Qdy$$

16.3 An Example

Example

Let C be the closed curve described by C: $x^2 + y^2 = a^2$, and 2: $\vec{F} = \left(\frac{x}{2}, \frac{y}{2}\right)$ Evaluate the line integral of F along C.

Key Points:

$$\nabla \times \vec{F} = k(Q_x - P_y) = 0$$
 throughout D

F is conservative.

$$f = \frac{1}{4}(x^2 + y^2) + C$$

$$\oint \vec{F} \cdot d\vec{r} = 0$$

independence of path

 $\vec{F} = \nabla f$

2. Uniform Expansion Field

$$\vec{F} = \nabla f$$
 on D

$$\oint \vec{F} \cdot d\vec{r} = 0$$

$$\nabla \times \vec{F} = 0$$
 throughout D

If
$$\vec{F} = \nabla f$$
, $\vec{F} = (f_x, f_y)$,

we have
$$\nabla \times \vec{F} = c(Q_x - P_y) = k(f_{yx} - f_{xy}) = 0$$

Green's Theorem

$$\begin{vmatrix} P & Q \\ \downarrow \downarrow & \downarrow \downarrow \\ dx & dy \end{vmatrix}$$

$$\oint \vec{F} \cdot d\vec{r} = \iint (\nabla \times \vec{F}) dx dy$$

$$\oint F \cdot d\vec{r} = \iint (\nabla \times F) dx dy$$

$$\oint P dx + Q dy = \iint \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P(x, y) & Q(x, y) \end{vmatrix}$$

$$\frac{\partial}{\partial x} \bigotimes \frac{\partial}{\partial y}$$

$$P(x,y) \quad Q(x,y)$$

$$= Pdx + Qdy$$

$$=Q_x-P_y$$

$$\vec{F} = (\frac{x}{2}, \frac{y}{2})$$

$$\nabla \times \vec{F} = k(Q_x - P_y) = 0$$

Four Vector Fields

1. Uniform Rotation Field

3. Whirlpool Field

2. Uniform Expansion Field

4. 2D Electrical Field

1:
$$\vec{F} = \left(\frac{-y}{2}, \frac{x}{2}\right)$$

$$2: \vec{F} = \left(\frac{x}{2}, \frac{y}{2}\right)$$

$$\left[\vec{F} = \nabla f; f = \frac{1}{4} \left(x^2 + y^2 \right) \right]$$

$$3: \vec{F} = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

$$4: \overrightarrow{F} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

$$\left[\vec{F} = \nabla f; f = \ln \sqrt{x^2 + y^2} \right]$$

16.3 A Summary

Theorem Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \nabla f \cdot d\vec{r} = \int_{a}^{b} df = f(b) - f(a).$$

Independence of Path $\int_{C_1} \nabla f \cdot d\mathbf{r} = \int_{C_2} \nabla f \cdot d\mathbf{r}$

Theorem $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

F is conservative. $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ throughout *D*

 $2: \vec{F} = \left(\frac{x}{2}, \frac{y}{2}\right) \qquad C: x^2 + y^2 = a^2 \qquad \qquad \oint \vec{F} \cdot d\vec{r} = 0$