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Supplemental Materials

The supplemental materials with a summary in Table 1 are provided to help students review the
following topics:

(1) vector fields; (2) gradient and normal vector; (3) curl and circulation;
(4) divergence and flux; (5) line integrals; (6) double integrals;

(7) fundamental theorem of line integrals;

(8) conservative fields and independence of path;

(9) Green’s theorem in both the tangential and normal forms;

(10) a comparison amongst Green’s, Stokes’ and Divergence theorems.
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Learning Outcomes

-

Formulas for Grad, Div, Curl, and the Laplacian
The Fundamental Theorem of Line Integrals
Cartesian (x, y, 2) - . .-
. K . 1. Let F=Pi+Qj+Rk be a vector field whose components are
LJs and k are unit vectors continuous throughout an open connected region [J in space. Then
in the directions of there exists a differentiable function / such that
increasing x, y, and z. vf = ﬁ fis of of o,
P,Q,and R gzre the ay * Az ,
if and only if for all points A and Bin D the value of fA F - dr is inde-
scalar components of S .
pendent of the path joining A to Bin D.
F(x, y, 2) in these 2. If the integral is independent of the path from A to B, its value is
directions. 5
) of of df / F-dr = f(B) — f(A).
Gradient Vi=-;1+ K A
d}’
Divergence |V - F = opP + 90 + R
dx dy 0z
i J k
Curl VxF=|2 2 2
Jx dy dz
P Q R
"2 f "2 f (-)2 f
Laplacian | Vf = + =
ax* ()_y2 oz
13
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Curl & Divergence (2D Version)

Curl: Divergence:
“a Cross product of V and F” “a Dot product of V and F”
S S ——— k 0 0 0
oio| 2 9 9 Ox oy 0z
ox oo 0Oy 0z
P(x,y) Qxy) O P(x,y) Qxy) O
VXF = k(Qx — P,) V-F=P, +Q,

5
' 5 3 1
3 " . — convergence
24
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16.3 The Fundamental Theorem for Line Integrals

We will discuss the following topics:

 anti-derivative vs. potential function;

* how to find the f of Vf =» Find a potential function f;
* Independence of path (for line integrals);

e conservative property (for vector fields).
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For Mid Term II

One Formula Summary for Sections 14.4 - 14.8

(14.4) df = fxdx + fydy = \7f . dr total differential
{ |

df(x) ., .
dx =f'(x) = fy

calc I:

df = f'(x)dx = frdx

calc II: df (x,y) = fydx + f,dy
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16.2 Line Integrals> Section16.3

I'= (P O, R) T tangent vector T(1) = r'(1)/[x'(1) |
s Y
W = / F-Tds The definition
\_ C 4
' Y
= / F-dr Vector differential form
. ¢ Wy,
b dr
= / F- 7 dt Parametric vector evaluation
b
— P@ 14 Qd_y 4+ R % t Parametric scalar evaluation
Ja dt dt dt
_ K Pdx +Qdy + Rdz Scalar differential evaluation

£=_ fabvf,d;= fabdf =f(b)—f(a)} Section 16.3 (“anti-derivative”)
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16.3 Anti-derivative vs. Potential Function

dG
1 Variable o= G'(x) = dG = G, (x)dx —_—

= G.dx =dG G : “anti-derivative”

b b
:>f G,(x)dx = f dG = G(b) — G(a)

2 Variables df = f.dx + f,dy =Vf . d7 —

> Vf-dr =df  f:“potential function”

:Lbe.dF=fabdf = f(b) — f(a)
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16.3 The Fundamental Theorem for Line Integrals

« The Fundamental Theorem of Calculus

b
1 Variable j G’(x)dx — G(b) — G(a) The Net Change Theorem
a

 The integral of a rate of change (G') is the net change.

 The Fundamental Theorem for Line Integrals:

2| Theorem Let Cbe a smooth curve given by the vector function r(t), a = t =< b.
Let f be a differentiable function of two or three variables whose gradient vector
V£ is continuous on C. Then

2 or 3 Variables ‘.( Vf-dr % flr(b)) — f '(l'(a} = f(x2, y2, 22) — f(x1, y1, 21)

v

« The line integral of VVf is the net change.

df :fxdx+fydy The total differential of a function f
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Example: Find a Potential Function

dG
1 Variable o= G'(x)dx = dG = G.(x)dx —

G, = 2x G = x*: “anti-derivative”

b
=>f 2x dx = G(b) — G(a) = b? — a?
a

2 Variables df = f.dx + f,dy =Vf . d7 —
Vi = (2x,2y) fr

:Lbe-dfzfabdf _ £(b) - £(a)
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Integration “Constants”

f=rk) g=9xy)
fx = 2x Jx = 2X

f,)=x*+C gxy)=x*+K()

Verify Verify

fx = 2x glx,y)y = 2x

Keep y as a constant
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Example: Find a Potential Function

Vi = (2x,2y) fr
fx = 2x fy =2y

f=x*+g90) ﬂ

fy:gy(Y) — gy(y)=2y
f=x+g) == gy)=y*+C

f=x*+y*+C
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Example: Anti-derivative vs. Potential Function

2 Variables df = f,dx + f,dy =Vf - d7

oint b: (k,
Vf = (@2x2y) foxt4yrec POl

, , point a: (i,])
s [ vfedi= | df = f®) = f(@) =K+ =i
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Summary: Anti-derivative vs. Potential Function

dG
1 Variable o= G'(x)dx = dG = G.(x)dx —

G, = 2x G = x*: “anti-derivative”

b
=>f 2x dx = G(b) — G(a) = b? — a2
a

2 Variables df = f.dx + f,dy =Vf . d7 —

oint b: (k,
Vf = (2x,2y) f=xt+yrec  POMERD

, , point a: (i,])
s [ vfedi= | df = f®) = f(@) =K+ =i
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16.3 2D vs. 3D

2| Theorem Let Cbe asmooth curve given by the vector function r(t), a < t =< b.
Let f be a differentiable function of two or three variables whose gradient vector
V£ is continuous on C. Then

[ Vf-dr = e ®) - f(@)

vf-dr = | df = f(b) — f(a)
L

Alx;, yy) B(x;, y3)
| ) | ( df = f.dx+ f,dy

Q C X The total differential of a function f
\_) 2 var ] Vf . (Ir =f'(x2, ).‘2) - .f(xl, yl)

=Y

v

3 var I Vf+dr = f(x2,y,22) — f(x1, 3, 21)
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16.3 The Fundamental Theorem for Line Integrals Supp

13

Definition Let F be a continuous vector field defined on a smooth curve C
given by a vector function r(¢), a = t = b. Then the line integral of F along C is

JF-dr=| Fa@)-r@ya=| F-Tds

PROOF OF THEOREM 2

when F = Vf,

‘c Vf-dr

V@) - () dr

[Vf.df]

f’fdx+ f’fdy+ f’fdz dt
dx dt dy dt dz dt

Cb(
a

b d

| B f(r(z) dt

df}

(by the Chain Rule) [

= f(r(b)) — f(r(a))
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Potential Function

|_m If F(x, v, z) = y*i + (2xy + ¢*)j + 3ye* Kk, find a function f such
that Vf = F.

Vf = (fu fy f2) = 0% 2xy + 3%, 3ye3%)

fr =y* fy = 2xy + e3* fz = 3ye**
f=xy*+90,2) ﬂ
fy=2xy+g,(y,2) == gy (v, z) = e>
g =ye** + h(z)
f=xy*+ye* + h(z) 1
f, =3ye** + h,(z) v h(2)=0
h=K
f=xy*+ye3?+K
48 San Diego State Univ. Spring 2025
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16.3 The Fundamental Theorem for Line Integrals

m]m[ Find the work]done by the gravitational field

mMG <
x|’

Fx) = —

in moving a particle with mass m [l'rom the point (3, 4, 12) to the point (2, 2, 0)] along a
piecewise-smooth curve C. (See Example 4 in Section 16.1.)

—mMGx : —mMGy o —mMGz
(x% + y? + z2)*2 (x? + y? + Z2)*2 ] (x* + y? + z2)*?

F(x,y,z) = Kk

W=LF-dr

whether F =Vf?

W=| F-dr=| Vf-dr =fbdf _f
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16.3 The Fundamental Theorem for Line Integrals

Find the work done by the gravitational field

mMG %
x|’

F(x) = —

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2. 0) along a
piecewise-smooth curve C. (See Example 4 in Section 16.1.)

mMG

\/x2 +y°+7

F=(P,0.Z)=Vf| /=

b b
W=LF-dr=LVf-dr =fdf = f
= £(2,2,0) — £(3,4,12) = mMG_ BEG —MG<1 —1)
_f(’l’ 7G4 )_\/m ¢32+12+122 NG 1B

The work done by F along any curve joining the two points and not passing
through the origin is the same. = independence of path
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Revisit : Anti-derivative vs. Potential Function

dG
1 Variable o= G'(x)dx = dG = G.(x)dx —

G, = 2x G = x*: “anti-derivative”

b
:>f 2% dx = G(b) — G(a) = b? — a?
a

2 Variables df = f.dx + f,dy =Vf . d7 —

oint b: (k,
Vf = (@2x2y) f=xt+yrec  POMERD

, , point a: (i,])
S [ vfedi= | df =f®) = f(@ =K+ =i
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TBD

if and only if

Independence of paths

conservative — F= Vf on D

if and only if ﬁ ﬂ

fﬁ -dr =0 — Vxl?:OthroughoutD

conservative  2D: VXF = k(Qx — y) =0

VXVf =0
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16.5: A “Meta” Vector: V = (a 9 a)

ox’ 0y’ oz

. a o 0
e (Consider a “meta” vector V = ( ,—,
dx 0y 0z

a vector F = (P(x,y,2),Q(x,y,2),R(x,y,2)).

), a function f = f(x,y,z) and

We can define the following:
* Gradient:

o = (G2 = (L) = ()

* Curl (a Cross product of I and 13):

ik
o 0 0

VxF = =(R,-O.,P.—-R.,0 -P
ax 8)/ 82 ( y QZ z X Q y)
P O R

* Divergence (a Dot product of V and ﬁ):

VeF=(P,+0,+R.)

MATH252 by B.-W. Shen 53 San Diego State Univ. Spring 2025



16.3 Independence of Path

| F - dr is independent of pathif | F - dr = |. F - dr textbook

Jﬁ . d7 is independent of pathif | F-d7 = J F-d#
C C1 C

!
1

used (to avoid
confusion)

For any two paths C; and C’; in D that have the same initial point
and the same terminal point, the line integrals alone C, and C’,

are the same.

Can we find such a F whose line integral is independent of path?

MATH252 by B.-W. Shen 54

San Diego State Univ. Spring 2025



16.3 Independence of Path

220 Independence of Path

J- d7 is independent of pathif | F -d# = J F-d#
C1 C

!
1

Can we find such a F whose line integral is independent of path?

Recall:

»

). Vi dr = £(e(b) — f(r(a)

We know that the above integral depends only on the initial point and
terminal point. Therefore, the integral is independent of path, i.e.,

fﬁ-df=j F.d#
C C

!
1 1

When F = Vf,the line integral of Fis independent of path.

f is called a potential function.
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Closed Curve and Path Independence TBD

The path independence yields:
f F.df = f F - d7
Cq Cq

We have: ﬁ

fﬁ-d?=o

The line integral along a closed
curve is zero.
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What We Discussed or Will Discuss: TBD

» Find the potential function f of F = (P, Q), i.e., F
Vf,to simplify the line integral; f, =P and f, =

S i

* Define the independence of path jﬁ.d,azj EIE
C Cq

1

1

-

« Show the equivalent property: 34 F-dr=0
« Define a “conservative” field using the above.

* Find a simple (math) expression to determine whether a
field is conservative, Q, = B, (fyx = fxy)

VXF =k(Q,—P,)=0  VXVf =0
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TBD

if and only if

Independence of paths

conservative — F= Vf on D

if and only if H ﬂ

fﬁ' -dr =0 — Vxl?:OthroughoutD

VXV =0
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16.3 The Fundamental Theorem for Line Integrals

Simple curve: a curve that doesn’t intersect
itself anywhere between its endpoints.

simple, not simple,
not closed not closed
/A simple closed curve: )
r(f ) 7 l'(fg) whena <t <t < b. simple, not simple,
K / closed closed

Simply-connected region: a connected
region D such that every simple closed
curve in D encloses only points that are in D.

simply-connected region

regions that are not simply-connected
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16.3 The Fundamental Theorem for Line Integrals

Simple curve: a curve that doesn’t intersect

itself anywhere between its endpoints

Intersection?
No ‘Q Yes
simple, not simple,

not closed not closed

simple,
closed

not simple,
closed

Simply-connected region: a connected
region D such that every simple closed

curve in D encloses only points that are
inD

singularity?

No ‘Q Yes

simply-connected region

regions that are not simply-connected

simple (no intersection)

r(t;) # r(t;) whena < t; < t, < b.

closed r(a) = r(b)

MATH252 by B.-W. Shen
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16.3 The Fundamental Theorem for Line Integrals TBD

" Independence of Path

3] Theorem [, F - dris independent of path in D[if and only il'l_i'(, F - dr = 0 for
every closed path C in D.

Definition fﬁ - d7 is independent of path if | F-dr = f F-d7
C C4

C1 1
- - r = - r = - - N = -
F-dr =J F-dr+ | F-dr = | F.d7 — F-dr
C C1 JCZ Cq1 —-C5 &
r - > r - >
=| F-dr—| F-dr =0
Jc1 Jc{
Conversely, C
N r N r 5 A closed curve
0=jF-dF=J Feodi+ F-dF:fﬁ.df_f 2.4
C Cq C2 Cq —C
=Jr Foai— | F.ap =>j F d?=j F -d7 Independent
c1 JC{ C1 o
MATH252 by B.-W. Shen 61
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16.3: Conservative Supp

4| Theorem Suppose F is a vector field that 1s continuous on an open connected
region D. If .fc F -dris [independenl of path] in D, lhet{F 1S a conservalive]veclor
field on D; that is, there exists a function f such that Vf = F.

PROOF Let A(a, b) be a fixed point in D. We construct the desired potential function f by

defining .
F=@,Q) F=Vf
VA a y a !
S = —f and = —f
L : P o _ @f _ 90

dy - dy dx ox ady dx
Qx =P y

VXF =k(Qx—B,) =0

F is conservative VXVf =0
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16.3 Conservative Vector Field: A proof Supp

fey=[""F-ar  F=Pi+Q]

flx,y) = ’( « dr + ’ F:dr= FM')‘)F-dr + ’ F - dr

v [0- b ) v (-'2

» Lower and upper limits are

d Jd ¢ _ not a function of x

“ax flx,y) =0+ ox ‘ 2 F - dr « Because of independence

: ; of path, the integral is not
function of x.

’ F-dr= ’_de+ Qdy

v (-'2 v L2

d Jd [ d
— f(x,y) =— ‘ Pdx + Qdy=— ’ P(t,y) dt = P(x,y)
ax d

ox JC, X Jx
« dy=0onC
Similarly y7Hon 2
—f(.x y) ——‘ Pdr+Qd} ’ Q(x, 1) dt = Qx, y
af d
F = P1+QJ—_fl+_fJ_Vf
ox dy
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16.3 Conservative Vector Field

5

where P and Q have continuous first-order partial derivatives on a domain D, then
throughout D we have

Theorem If F(x,y) = P(x,y)i + O(x,y) jis a[conservative vector Iield],

5P 30 VXF = k(Qy —P,) =0

ay ox

6

region D. Suppose that P and Q have continuous first-order derivatives and

Theorem Let F = Pi + Qj be a vector field on an open[simply-connected ]

aP 9
— = ,Q throughout D
dy ox
[Then Fis conservalive.} VXEF =0
i j k
o9 a4 0 -
recall: VXF = =(0,0,0, — P)) CCC: _
a}j‘ aQy 502 curl, cross product, conservative
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16.3 The Fundamental Theorem for Line Integrals

6| Theorem LetF = Pi + Q] be a vector field on an open simply-connected
region D. Suppose that P and Q have continuous first-order derivatives and

dP 0 =
e aQ throughout D VXF = k(Qy—P,) =0
y X

Then F 1s conservative.

m LE0TTTF] Determine whether or not the vector field (P,Q)=(x—y,x —2)

Foroy)=(x-»i+ -2 p=-1 Q@,=1

M LY ~ J ’l 1 "
1S conservative. py * Q,

EEE]HJ Determine whether or not the vector field P,=2x Q,=2x
y x =

F(x, }') = (3 e 2X_Y)i -+ (,172 — 3)2)j Py — Qx

1S conservatve.
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Revisit: Potential Function

If F(x, v, z) = y*i + (2xy + ¢*)j + 3ye* Kk, find a function f such

that Vf = F.

Vf = (fu fy f2) = 0% 2xy + 3%, 3ye3%)

fx=y2

f=xy*+9,2)

fy =2xy+g,(y,z) =

f=xy*+vye3 + h(z)

fy = 2xy + e3*

‘

9y(y,z) = e?*
g =ye’* + h(z)

f, =3ye32 + h,(z) !

f=xy*+ye3?+K

f, = 3ye®*

hz(Z)=O
h=K
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16.3 Computing Line Integrals using a Potential Function

_EXAMPLE4 | | P — 9y
(a) fF(x,y) = (3 + 2xy)i + (x* — 3y?)j, find a function f such thatF = Vf. |7V
(b) Evaluate the line integral |, F - dr, where C is the curve given by Q, = 2x
r(f) =e'sinti + e’'costj O=st=mxw Py = Qy
Vf = (fo fy) = B+ 2xy,x* — 3y?) batt=m
— 42 2
fi =3+ 2xy fy =x% =3y 7 =(0,—e™)
i |
f=3x+xy+g®») datt=0
— 42 — 2
fy =x*+g, — gy = —3Yy 7 =(0,1)
g=-y +K

f=3x+x*y—y>+K
F.df =| Vf-d# = df = f(b) —
Lrjcfrfcff()f(a)

= f(0,—e™) — f(0,1) = e3™ + 1
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A Journey into the Beauty of Vector Calculus

Math252, San Diego State University

Chapter 12

Chapter 13

In Chapter 12, we discussed the following topics:
a) The Inner product,
b) The Cross product,

T The unit tangent vector is
B (bcos(t),bsin(t)) _ 7
a-b=|a||b|cosd 2 T = — =(=sin(?), cos(t))
|a X b|=|a||b|sin@ r - +

The derivative of the unit tangent vector is

T = Cfi_f =(-cos(2), -sin(1))

The unit normal vector is

N-= g = (—cos(t), -sin(t))
7 _ b

The curvature is k=|T'|/|[r'|=1/b
Inner & cross products
(orthogonal)

rT=0 T-N=0

c) Equations of Lines, PX =t
d) Equations of Plane. PX-f=0
A circle: x2+y2=p?
o a-b ==)A parameterization of the circle:
B projection = |b|cos(0) = H r(t) = (bcos(t), bsin(t)) -
lei ar aF
|b|Sl ) |5X5| == The derivative of the vector r is
height = |b|sin(0) = — r’(t) = (-bsin(t), bcos(t))
- - la| ==)>The magnitude of r’(t) is
|b|cos(9) a [P (t)|= b2 sin* 1)+ b7sin> (1) = b

Chapter 14

Chapter 16

Formulas for Grad, Div, Curl, and the Laplacian

One Formula Summary for Sections 14.4 - 14.8 Pmrm— T T A S g
. et = i+ .+ e a vector fiel whose components are
swe y' 1. Let F=Pi+Qj+Rk b field wh p
i, j, and k are unit vectors continuous throughout an open connected region I in space. Then
in the directions of there exists a differentiable function /'such that
_ _ oz ; ; TR—'S TN
(14.4) df = fedx + fydy =Vf.dr total differential e PeweieieEk
1 45 GF if and only if for all points A and Bin Dthe value of [, F - dr is inde-
N scalar componen pendent of the path joining A to Bin D.
df dx dy dr Cha|n rule W|th F.(x,y‘, 2) in these 2. If the integral is independent of the path from A to B, its value is
(14 5) — f + f — Vf . directions. i ‘
- X = — a a d F-dr = f(B) — f(4).
de *de " Vae dt  x=xOandy=y® S PR Jiee
= 'a
(14.6) D,f = (f f; ) (a,b) =Vf ar directional derivative Divergence |y F = 92, 90 OR Groen's Theorem (Tangential Form) | [J'V x F Kdxdy = § f.d;\]
. u) — UxrJy)~ ’ - |d—> ax 9y oz (k )
T AP i a " —
U=— ' " k Stokes’ Theorem “ curl F - dS = .‘F - dr
|A7] Curl vxF=|Z L 2 ts < )
s Y
—_ P R Green’s Theorem (Normal Form) V- -Fdxdy=§F-nds
(14'7) Vf =0 max and min ¢ fkf =g J
0f  Rf f -
Lagrange Laplacian | V*f = ’7 +—5+=5 Divergence Theorem ( m div F dv —ff?"ﬁ ds\
9. a az =
(14.8) Vf = Vg multiplier . L J
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Learning Outcomes

-

Formulas for Grad, Div, Curl, and the Laplacian

Cartesian (x, y, 2)

i, j, and k are unit vectors
in the directions of
increasing x, y, and z
P,Q,and R zre the
scalar components of
F(x, y, 2) in these

directions.

) of . of df
Gradient Vf = PRl %y k
Divergence |V/ - F = opP + 90 + R

dx dy 0z
i j Kk
Curl vxF=|2 2 2
Jx dy dz
P Q R
52 52 52
Laplacian | Vf = dxfz dyj; - !

L.

The Fundamental Theorem of Line Integrals

Let F=Pi+Qj+ Rk be a vector field whose components are
continuous throughout an open connected region [J in space. Then
there exists a differentiable function / such that

df df df
Vf =% l ()_y dZ zK

if and only if for all points A and Bin D the value of fABF + dr is inde-
pendent of the path joining A to Bin D.

If the integral is independent of the path from A to B, its value is

B
A F-dr = f(B) — f(A).

4 . . R
Green’s Theorem (Tangential Form) f f Vx F - kdxdy = Eﬁ F-dr
v &R /
/ . . )
Stokes’ Theorem U‘ curl F + dS = JC F - dr
J
~ N
Green’s Theorem (Normal Form) ffv -Fdxdy = Eﬁf 1 ds

. R -

Divergence Theorem HJ divF dv = ffF ‘n dS
A )
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Green’s Theorem

= Pdx + Qdy

Pgg Q

dx dy

= Pdy — Qdx

o0
>3
P(x,y) Q(x,y)
:Qx_Py
o2
i 3
P(x,y) Q(x,y)

:Px+Qy
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Green’s Theorem

fﬁ.df’ =j (VXF)dxdy 9 0
P Q ox dy
$ & a ap 9 7
dx dy %de + Qdy = ﬂ ¢ — dxdy P(x,y) 0(x,7)
= Pdx + Qdy ~ Ol
T
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16.3 An Example

Example

— [ X
Let C be the closed curve described by C: X+ y2 = az, and 2: F = (—,X)
Evaluate the line integral of F along C. 22

Key Points:

2. Uniform Expansion Field

VXF = k(Qx —PB,) =0 throughout D

AN NN S T R B A
. . N INNNANN
F is conservative. F=Vf NINN Vs
f=‘@ tyH+C A INNNNS
AP A TR T T N NN
S A VN NN

f - dT independence of path
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Independence of paths

conservative — F= Vf on D

| J

fﬁ' -dr =0 — Vxl?:OthroughoutD

If F=Yf,F = (fufy),

we have VXF = C(Qx — y) = k(fyx — fxy) =0
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Green’s Theorem

P @
$ 8
dx dy

= Pdx + Qdy

fﬁ A7 = j (VXF)dxdy

%de+Qdy ﬂ aQ—aP dxdy

N [

VXF =k(Q, —P,) =0

)
& % dy
P(x,y) Q(x,y)

:Qx_Py
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Four Vector Fields

1. Uniform Rotation Field 2. Uniform Expansion Field — (-y x
B TR
e RN NNVt
RN NNVt
PV N SNNNNN s
_////,-—\\\‘:.:m R T N L B D S . g 2.F xy
SR o ——— s i s
A T T
R - - - T T T
AR ST PR A R Pl e L L s
NN S A A TN N NN — ] 5 5
NN >TSS I A A A BN NAN NN F =Vf7: =_(x + )
N Q LA AN NN AV 4 Y

3. Whirlpool Field 4. 2D Electrical Field
X

7 -y
3: F= ,
X +y° x4y’

—————————

J: p S _ —_— x

SR M T 4. F = : Y
o . 2 2° .2 2
S X +y X +Yy

F=vﬂf=me+yﬂ
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16.3 A Summary @

2| Theorem Let Cbe a smooth curve given by the vector function r(¢),a < t < b.
Let f be a differentiable function of two or three variables whose gradient vector
V£ is continuous on C. Then

’( Vi« dr =f(r(b) — flra))

[ F-dr= ['Vf-dr=[df = f(b)- f(a).

280 Independence of Path L Vfedr= ’( Vf-dr

v

3| Theorem |.F - drisindependent of path in D if and only if |.F + dr = 0 for
every closed path C in D.

F is conservative. C,’P = ?Q throughout D
dy dx
—_— x -
2: F=(E,§) C:x2+y2=a2 fF.d'f):O
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