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Learning Outcomes

-

Formulas for Grad, Div, Curl, and the Laplacian

Cartesian (x, y, 2)

i, j, and k are unit vectors
in the directions of
increasing x, y, and z
P,Q,and R zre the
scalar components of
F(x, y, 2) in these

directions.

) of . of df
Gradient Vf = PRl %y k
Divergence |V/ - F = opP + 90 + R

dx dy 0z
i j Kk
Curl vxF=|2 2 2
Jx dy dz
P Q R
52 52 52
Laplacian | Vf = dxfz dyj; - !

L.

The Fundamental Theorem of Line Integrals

Let F=Pi+Qj+ Rk be a vector field whose components are
continuous throughout an open connected region [J in space. Then
there exists a differentiable function / such that

df df df
Vf =% l ()_y dZ zK

if and only if for all points A and Bin D the value of fABF + dr is inde-
pendent of the path joining A to Bin D.

If the integral is independent of the path from A to B, its value is

B
A F-dr = f(B) — f(A).

4 . . R
Green’s Theorem (Tangential Form) f f Vx F - kdxdy = Eﬁ F-dr
v &R /
/ . . )
Stokes’ Theorem U‘ curl F + dS = JC F - dr
J
~ N
Green’s Theorem (Normal Form) ffv -Fdxdy = Eﬁf 1 ds

. R -

Divergence Theorem HJ divF dv = ffF ‘n dS
A )
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Green’s Theorem

0 0
P 0 aQ aP v 2
@ @ dex+Qdy Jf ——— xdy ax% dy
dx dy
P(x,y) Q(x,¥)
=de+Qdy :Qx_Py
T
C
P._0Q a 9
c § 3
dx dy B dP 00
dey—de_jf (0x+6y)dxdy P(x,y) Q(x,y)
= Pdy — Qdx

:Px+Qy
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Topics to be discussed

potential function €« line integral > double integral

b
f(b)—f(a)=j\7f-df= LF-Tds

A closed curve

o=§£df=3€Vf-dF=fﬁ-Tds

fﬁ-?ds =ﬂ|7><ﬁ-l?dxdy

zero order €& 1st order > 274 order
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Tangential vs. Normal

tangential
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Green’s Theorem (tangential form)

circulation (or work) = double integral of “curl”

28 fravrone [[(C-D)aey | sige @
weow P(x,y) Q(x,y)
= Pdx + Qdy = (P,Q) - d7 = Q, — P,
= (P,Q) - (dx,dy) T
= dit_ (dx,dy) C ’
|d7| ds

(dx,dy) = Tds

= (P,0Q) - Tds
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Curl & Divergence (2D Version)

Curl:
“a Cross product of V and F”
S S ——— k
S d 0 0
VXF = —

0x ¢ oy 0z
P(x,y) Q(xy) G

VXF = k(Qx — P,)

3)
3
1
23

MATH252 by B.-W. Shen San Diego State Univ. Spring 2025




Green’s Theorem (tangential form)

N 0 dP T tial
jéF.Tds=3£de+Qdy=U (%—@)dxdy et

circulation j (curl) Tom C.
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16.4 Green’s Theorem: Positive Orientation

YA YA VA
3 ("
D ' p , D
¢ 5
> > »
0 y O X 0 X
Counterclockwise orientation (a) Positive orientation (b) Negative orientation

The curve is oriented so that the
region D is always on the left as the
curve is traversed.

=>» Along the entire boundary C of
D in such a sense that D is on
the left as we advance in the
direction of integration
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16.4 Green’s Theorem

YA YA . YA 1
7 rr ‘ " v ("
- ‘ ’ ’
D F p | D
¢ - Fe g
0 500 g 0 g
Counterclockwise orientation (a) Positive orientation (b) Negative orientation
The curve is oriented so that the
region D is always on the left as the
curve is traversed.
Green’s Theorem Let C be a:posilively oriented,] piecewise-smooth, éimple closed]
curve in the plane and let D be the region bounded by C. If P and Q have continu-
ous partial derivatives on an open region that contains D, then
. [ d dP
’ de+Qdy=” ,Q— - dA
ve JJ O\ ox dy
o)
circulation (or work) = double integral of “curl”
29 San Diego State Univ. Spring 2025
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16.4 Green’s Theorem

Green’s Theorem Let Cbe a [posilively oriented,] piecewise-smooth, [simple closed]
curve in the plane and let D be the region bounded by C. If P and Q have continu-
ous partial derivatives on an open region that contains D, then

~ ([0  oP
’de+Qd}-‘=”( C_ )(IA
¢ W

D

. dx dy
e |f b . oD represents the
dQ  aP - . :
1 ’ — ——— |dA= ’ : Pdx + Qdy positively oriented
g \ox oy 5 boundary curve of D

Double integral <--> Line integral

Notation # Pdx + Qdy  or P dx + Qdy
JC JC

C

Recall: " F'(x) dx = F(b) — Fla)

integral <--> function evaluation
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16.4 Green’s Theorem (A proof) Supp

PROOF OF GREEN'S THEOREM FOR THE CASE IN WHICH D IS[A SIMPLE REGION}

Goals | Pdx = - H - A ”C Qdy= || ‘;—f dA  D={xy|a=x=b g =y=g)
g D

0

RHS T3 ’ P dA 1’ ’gw df: (x,y) dy dx —D [P(x, g2(x)) — P(x, g1(x))] dr}

Ql(x)

kn

LHS [ Py dx= | POsy) dx+ [ Py dx+ | Poy)du+ | PGxoy)ds

>

YA e , b
Y =921%) ‘ P(x,y) dx =[L P(x, gi(x)) d.\}

40,

>

v

P(x,y)dx = — ‘ i P(x,y) dx {— [b P(x, g2(x)) dx}

>

‘ P(x,y) dx =[O}= ‘ P(x, y) dx}
. R

viie

[.’.c P(x, y) d% = Lb P(x, g\(x)) dx — Lb P(x, g2(x)) dx

31 San Diego State Univ. Spring 2025
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16.4 Green’s Theorem

> - - A
fF-Tds=’¢F-d17 0,1)
. = a0 aQ aP o
JoPdx+ Qdy= H (ax "oy ) o 0.0 g
D
FIGURE 4

TN Evaluate [, x*dx + xy dy, where C is the triangular curve consisting of the
line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).

ki

T Evaluate §, 3y — e¥"%) dx + (7x + /y* + 1) dy, where C is the circle
+y2=09,
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16.4 Green’s Theorem: 1D Integral > 2D Integral

S - " '’ dQ aP
fF.TdS:fF.df’ ~‘CP(I.?(+Q(1}-*=H(ax - av)dA
.[;o o

TN Evaluate [, x*dx + xy dy, where C is the triangular curve consisting of the
line segments from (0, ()) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).

jéﬁ - dr = f(x‘*,xy) - (dx, dy) (P,Q) = (x*,xy)
9Q aP dxd 0)dxd i
ﬂ(ax_ g J (v~ 0)duxdy 0,1) y=1-x
11-x 1 yz 1—x YtopC
=JJ (y)dy dx =j — dx
2 D
0 0 0 0
1 1 3> >
(1 —x)? 1 [x3 5 1 0,0) .
— = —|— — — — ’ Ybottom (1,0)
> X 513 X“+x 6
0 0
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Example 2

N2 0UITF] Evaluate TJ( 3y — ™) dx + (7.\# + Jyt + 1) dy, where C is the circle
x° + }?2 —

%ﬁ-df’:f(By—eSi“x ,7x+\/y4+1)-(dx,dy)

(P,Q) = (3y — "™, 7x + Jy* +1)

— dxdy =[] (7 — 3)dxdy
ﬂ aQ OP U
=4ﬂdxdy =4ff dA = 4(nr?) = 36m
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16.4 An Application to Compute an Area

(a0 oP :
Consider the Green’s theorem: H ( rol av)dA = ’(,Pd&' + Qdy
) 3 ) Je

To compute an area, we can choose dd—Q - (:,—P =1 LHS = f dA = A
X YV

The following thee cases meet the above condition, i.e

Q P _,
X dy
P(x,y) =0 P(x,y) = —y P(x,y) = —y _
vector field
O(x,y) = x Q(x,y) =0 O(x,y) =3
Plug either one of th@ 57 57 LHS
above into the RHS
. s
. . s |
‘#(, xdy = —§ ydx = 3 #J xdy — vy (L\} ﬂ 1dA=A
i v v
Qdy Pdx TBD
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16.4 An application to compute an area

2 2
. X
[l S 0UTJTE] Find the area enclosed by ' the circle + = | by computing a line integral. }

Y
2 2
a a
(2 L ) - ) = =y
H ( .Q T ) dA = ’ P dx + Q d}: P(.\, }) 2y
Ji ox dy Je
D 0. 3) =

LHS=ﬂ1dA=A

%x, y) = (acos(t),asin(t))
(dx,dy) = (—asin(t),acos(t))dt
RHS = %de + Qdy = lfxdy — ydx
2

1
2

9Q 9P _

ro =

2T 1 2T
= —j a’® cos?(t) dt + a®sin?(t) dt = EJ a’dt = ma®
0 0

Z

[ VS0TTTE] Find the area enclosed by the ellipse x2 + -
a

‘e
[ [

|
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Why Line Integral? TBD

[10 points] Compute the area enclosed by the curve for an idealized heart C: r=1+cos(60),

(a) ans =

(b) Your question ID is: 2987-6577-2499—-119—-bshen@sdsu. Please provide the security code:

(c) Provide derivations. [8 points]

(Left) Fifteen airplanes saluted URMC, healthcare providers, first responders,
and essential workers in the Thomaston area by creating a heart above the community.
Photo by Stacy Haygood. (Right) An idealized heart with r=1+cos(6).

Green’s Theorem (Tangential Form) @‘f VxF- kdxdy = fﬁ F- d;J
R

Consider the line integral / X dy.
C

 The above suggests that the area can be determined by the time
evolution of the airplane's locations, (x(t), (y(t)).
* |t can be done in parallel during the flights of 15 airplanes.
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Double Integral TBD

[10 points] Apply the following integral to compute the area enclosed by the curve for an idealized heart C: r=1+cos(6):

b 1+cos(6
Ans = / / f(r, 0) rdr do.
a Je syms theta r rmax
Fir, 6) = % r =1 + cos(theta) %not defined
a= ;b= ’

rmax= 1 + cos(theta)
int(int(r, r, O, rmax), theta, O, 2*pi)

Ans =

Your question ID is: 9339-1429-5629-3900—-bshen@sdsu. Please provide the security code:

x = cosfl) (cos(t) + 1), y = sin(t) (cos(t) + 1)

>> int(int(r, r, @, rmax), theta, 0, 2xpi)

ans =

(3xpi)/2

(Left) Fifteen airplanes saluted URMC, healthcare providers, first responders,
and essential workers in the Thomaston area by creating a heart above the community.

Photo by Stacy Haygood. (Right) An idealized heart with r=1+cos(6).

0 € |—m, ] r € 10,1+ cos(0)]
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Line Integral TBD

ﬂ dxdy = ﬂ rdrdd = [xdy Green's Theorem:
double integral and line integral

[ xdy = [ (cos(8) + cos?(8)) * (cos(8) + cos?(0) — sin?(0)) db

syms x y theta

r=1 + cos(theta)
X =r * cos(theta)
y = r * sin(theta)

int( (cos(theta) + cos(theta)A2 ) * (cos(theta) + cos(theta)A2 - sin(theta)A2), theta, O, 2*pi)

>> int( (cos(theta) + cos(theta)~2 ) * (cos(theta) + cos(theta)~2 - sin(theta)”2), theta, 0, 2xpi)
ans =|

(3%xpi)/2
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Curl & Divergence (2D Version)

Curl:
“a Cross product of V and F”
S S ——— k
S d 0 0
VXF = —

0x ¢ oy 0z
P(x,y) Q(xy) G

VXF = k(Qx — P,)

)
3
1
41
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Rotation Field

« Counter-clockwise Circulation « Clockwise Circulation

e UXF-k>0 e VXF-k<0

Vertical axis

I D

Vertical axis

Curl F (xg, yp) k>0 Curl F (xg, yg) ek <0
Counterclockwise circulation Clockwise circulation
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16.4 Green’s Theorem (Vector Form)

YA YA VA
(.v
D " p n
C ¢
> 2 > »
0 y 0 X 0 X
Counterclockwise orientation (a) Positive orientation (b) Negative orientation

The curve is oriented so that the

region D is always on the left as the
curve is traversed.

=>» Along the entire boundary C of D in such a
sense that D is on the left as we advance in the
direction of integration

fpd + Qdy = rr(aQ ap)dd
*+ 0y = [ \5x " ay) PV
vector form fﬁ-?ds =J5f|7xﬁ.zdxdy
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16.4 Example 4

-

mm Evaluate ¢,.y* dx + 3xy dy, where C 13 the boundary ol the semiannular
region D in the upper half- plane between the circles x* + y*> =1 and x* + y* = 4.

fﬁ.m

U VXFE - I_c)dxdy

fﬁ - d7 = %(yz, 3xy) - (dx, dy)

The curve is oriented so that the region
D is always on the left as the curve is
traversed.

VA
2 2
P, — 2, 3x +y =4
(P,Q) = (¥*,3xy) Cortl
£ o MC
aQ aP A (-
j J dxdy j (3y — 2y)dxdy [ C y' 3 /\ C.
L2 4 g
bt / .
0
x+y*=1
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Example 4: Double Integral (.continued)

m_ Evaluate ¢, y* dx + 3xy dy, where C is the boundary of the senuannular
region D in the upper hall-pldne between the circles x* + y*> =1 and x* + y* = 4,

fj OQ — aP) dxdy = J (3y — 2y)dxdy

dy
T 2 i
= ﬂ ydA =ffrsin(0)rdrd9 2 +yr=4
01 ///—\’\/\\
€
"o 372 7 /D h
r T / el e
Y A ) b \
Oj [3]1 AW W
Y x+yr=1 *
:E FIGURE 8
3
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Example 4: Line Integrals (.continued)

m_ Evaluate §,.y” dx + 3xy dy, where C is the boundary of the semiannular
region D in the upper hali-plane between the circles x*> + y> = 1 and x* + y? = 4.

5 The curve is oriented so that the region
3€ F-dr = j F-di# Dis always on the left as the curve is
C1+C2+C3+Cy traversed.
VA

C1: (x,y) = (2cos(t), 2sin(t)) t € [0,m] 2ty

C:(x,y) =(t,0) te[-2-1] /C T%\‘\

£ D N

Cs: (x,) = (cos(t), sin(t)) // / ‘C\B/\ \\
' \
t € [m, 0] CZ; 20 2/— C;L i
Cs: (x,y) = (¢,0) t €[1,2] x*+y =1Ly
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Example 4: Line Integrals (.continued)

m Evaluate p( y*dx + 3xy dy, where C is the boundary of the semiannular
region D in the upper half-plane between the circles x* + y* = 1 and x* + y* = 4.

C1+Cy+Ca+Cy 3 c;
. 64
Ci:(x,¥) = (2cos(t), 2sin(t)) t € [0, ] —16 + 3
Co: (x,y) = (t,0) t € [-2,—1] 0
Cs: (x,y) = (cos(t), sin(t))
3
t €|m,0 2 — —
[, 0] -
Cy: (x,y) = (¢,0) t €[1,2] 0
55 San Diego State Univ. Spring 2025
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Example 4 (details, C1)

J ﬁ-d?=j y2dx + 3xydy
c c

1 1

Cy: (x,y) = (2cos(t), 2sin(t)) t € [0, m]
(dx,dy) = (—2sin(t), 2cos(t))
= Jr —8sin3(t)dt + 24 cos?(t) sin(t) dt
0

= Jr —8 (1 — cos?(t))sin(t)dt + 24 cos?(t) sin(t) dt

: :
= | —8sin(t) dt + 32 cos?(t) sin(t) dt i ket =t

JO a5 Cl N c

2 y. - l

= [Beos()]f 2 [cos’ (I [ 716G
— 164+ 2 C, ’ C, )

3
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Example 4 (details, C3)

j ﬁ-d?=f y2dx + 3xydy
c c

Cs: (x,y) = (cos(t),sin(t)) t € [m, 0]
(dx,dy) = (—sin(t),cos(t))

0
_ f _sin?(¢)dt + 3 cos?(¢) sin(¢) dt

0
= Jr — (1 — cos?(t))sin(t)dt + 3 cos?(t) sin(t) dt

0 3 o
— jr —sin(t) dt + 4 cos?(t) sin(t) dt < g Ty =4

_ - -

£ D

= [cos(t)]Y —g[COSB(t)]g / ‘ il C:f \
- ) — g Cz ’ C4 '
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Ex5: Whirlpool Field: Double Integral

EEES IfF(x,y) = (—yi + xj)/(x* + y?), show that |.F + dr = 2 for every

positively oriented simple closed path that encloses the origin.

ffoﬁ-l_édxdy=3éﬁ-de=dex+Qdy

LHS = f — — —) dxdy

2

y 2

ﬂ (x? + yz)z (6% +y2)?

dxdy

LHS =0777?

Solve

V4

P

2 \ NN

\\\\\\
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Ex5: Whirlpool Field: Line Integral (.continued)

ffoﬁ-lzdxdy=fﬁ-7ds=3€de+Qdy

--------
-------
...............
LY LY ]
.......

=y o — :_
RHS=dex+ d )é ......... dx + —— dy:
Q Yy = xZ + y-Z ......... e yz ..... y
(x,y) = (acos(t), asin(t))
(dx,dy) = (—asin(t),a cos(t))dt 3. Whirlpool Field

°T g Slnz(t) a % cos?(t) [ore

= 5 5 dt DL

0 d d [N

T

2m NN

= dt = RHS Circulation

0
Solve
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Ex5: Whirlpool Field (with a singularity)

EEES IfF(x,y) = (—yi + xj)/(x* + y?), show that |.F + dr = 2 for every
positively oriented simple closed path that encloses the origin.

UVxﬁ-l_c)dxdy=¢ﬁ-fds=¢de+Qdy

LHS =07?7? RHS = 2m
0 0P
Recall ¢ — =
dx 0dy
y? — x? y? — x? analyze
(x2 + y2)2 o (x2 + y2)2 (discuss)
(interpret)
adQ oP
T 3y = 0 except at (x,y) = (0,0)
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Failure of existing rules is the prelude to a search
for new ones. (Gleick, 1987)

o + Question Details m252-supplemental-ex3-final-new-r [4655383] -

Let C be a circle, x2+y?=a2 , C' be a circle, x2+y?=¢? ,
D be the region 0 < x2+y2 < a2, D be the region 0 < 52 <x2+y2 < a2, and F = (P, Q).

Let F be the vector in Eq. A3, i.e., (P, Q) (—2L 2)
x24y2" x2+y

(a) Flndj{ F-Tds; ;ans =
c

(b)Find// VxF-KdA;ans =
DS

(c) Compare the results in (a) and (b).

‘/\
\/
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Two Cases with Positive Orientation

* A simply connected domain (left): Along the entire boundary C of D
in such a sense that D is on the left as we advance in the direction of
integration.

VA Y

D
“ ©

wyY

« Aregion that is not simply connected (right): Region D whose
boundary C consists of two parts: C, is traversed
counterclockwise, while C, is traversed clockwise in such a way
that D is on the left for both curves.
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Annular Ring (for removing a singularity)

/"/‘
//’ :
/S
/ D |
/
/ 7
J .
! / _
] B
'
’ |
- — f
\ ‘ /
\ \‘ i
l‘ \.
\ \
\
\ N
\ _
\\
" 2 |

I I T I

Remove a singularity at the origin
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Determine the path/curve for the line integral

When a singularity appears ... f F-d
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When a singularity appears ...

jﬂﬁ-df =f F.d7
C1+C, )

1. Remove the singularity

2. Determine the boundaries

3. Determine the orientation

* A positive orientation
leads to C; + C5;

e (, appears to have a counter — clockwise orientation;
* (, appears to have a clockwise orientation;
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Ex5: Whirlpool Field (with a singularity)

EOTEES I F(x,y) = (—yi + xj)/(x* + y?), show that |.F - dr = 2 for every
positively oriented simple closed path that encloses the origin.

UVxﬁ-l_c)dxdy=§ﬁ-7ds=¢de+Qdy

00 9P
P 3 = 0 except at (x,y) = (0,0)

Remove the singularity at the origin Dg: £ < x? +y? < a?
00 aP |
Py 3y =0 in Dy

ﬂ UXE -k dxdy = 0
Dg

However, the region has “two” boundary curves now.
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16.4 Extended Versions of Green’s Theorem

The boundary of D1 is illustrated by a green curve,
denoted as g*.

The boundary of D2 is illustrated by a blue curve,
denoted as b*.

ijxﬁ-dedy=j F-Tds
Dy g*

ﬂwﬁ-l?dxdy=f F-Tds

D,

ffoﬁ-l_{)dxdy=f ﬁ-fds+jﬁ-7ds=j F-Tds
* * C1+Cy

Ds

MATH252 by B.-W. Shen 77 San Diego State Univ. Spring 2025



Ex5: Whirlpool Field (with a singularity)

EOTEES I F(x,y) = (—yi + xj)/(x* + y?), show that |.F - dr = 2 for every
positively oriented simple closed path that encloses the origin.

However, the region has “two” boundary curves now.

- - N - N . 2 2< 2
RHssz-dF =j F-dr+UF-dr} Dg: e<x*+y*<a
Cl C2 _ - o -

Recall LHS = ﬂ VXE -k dxdy = 0

Thus,f ﬁ-dr+fF dr =0 LetC';=—C, |
C

1 Co

j ﬁ-d?:—f F-d
C C

1 2

j F.di=2m
C

1

=
[
| p
A
T
QL
=
[
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Ex5: Whirlpool Field (with a singularity)

EOTEES I F(x,y) = (—yi + xj)/(x* + y?), show that |.F - dr = 2 for every
positively oriented simple closed path that encloses the origin.

Dg: £ < x? +y? < a? Consider the following domain
VA
o
- \"V\TC, ‘ .
Uy -
Since VxF = 0 and C, = —C’, we have
H-Vxﬁ-l_c)dxdy=0 ﬂVxﬁ-l?dxdy=Ofﬁ'd77+Jﬁ'dfzo
D D ¢ “2
jﬁ-d?=J F.dr Jﬁ-d?=Jﬁ-d?=2n
C1 Crq C C1
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A Summary for Example 5 (with a singularity)

EEES IfF(x,y) = (—yi + xj)/(x* + y?), show that |.F + dr = 2 for every
positively oriented simple closed path that encloses the origin.

ﬂVXﬁ.zdxdy=3€ﬁ.fds=fﬁ.ﬂmj . Tds
C —

Cr
Dg A
AT €
I \
- - stae. (7 |
ff VXF -k dxdy =0 ; /1% L
\\‘\*_// / X
DS (\\ DS = /’/
- B i
27 Both C and C'appear to have

counter — clockwise orientation.

jﬁ-d?
C
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A3: A Summary (Whirlpool Field) @

_ C V X F ‘ k = O
P L
— \
/ o \
- —>
| 7% [ (Pdx+Qdy)=[_(Pdx+Qdy)
\ DS ,/"/ ) C'
\\\__aﬁ B
Both C and C’ are counterclockwise.
1.5 1.5
(a) (b)
1 ] 1
0.5 0.5
ol [ Happy
Holidays!
-1 1 -1
-1.5 : ‘ ‘ ‘ -1.5 : ‘ ‘
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5

m EOTEES IfF(x, y) = (—yi + xj)/(x* + y?), show that . F - dr = 2 for every
[ positively oriented simple closed path that encloses the origin)
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1.5 1.5
(a) (b)
1+ 1
0.5+ 1 0.5+
s Or 0
A\
-0.5+ -0.5
17 C1 | 17 C2 7C3
1.5 | | ' ' | 1.5 | | ' ' w
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
x/a x/a
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16.4 Extended Versions of Green’s Theorem

0 Extended Versions of Green’s Theorem D: a finite union of simple regions.

[0 aP
’ de+Qd}"=H (.Q— : )(IA
QUG JJ O\ ox dy
1y
(0 aP
’ Pdx + Qdy = ” (,—Q—,—)(IA
JOU(-Cs) JJ O\ ox dy
1),
: : ‘[ 0Q  oP
D =D,UD,, and its boundary 1s C=C, UC,. ‘ Pdx + Qdy = ‘ ’ B dA
JOUC Ju 2 v
D

The boundary of D, 1s C, UC.,.
The boundary of D, 1s C, U (-C,).

The boundary of D1 is
illustrated by a green
curve.

The boundary of D2 is
illustrated by a blue curve.
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Sumary: Green’s Theorem

0 0
P 0 aQ aP v 2
@ @ dex+Qdy Jf ——— xdy ax% dy
dx dy
P(x,y) Q(x,¥)
=de+Qdy :Qx_Py
T
C
P._0Q a 9
c § 3
dx dy B dP 00
dey—de_jf (0x+6y)dxdy P(x,y) Q(x,y)
= Pdy — Qdx

:Px+Qy
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Green’s Theorem

circulation (or work) = double integral of “curl”

T
‘9° n 20
% C 0x dy
dx dy @
oP 0 P(x, ,
= Pdy — Qdx fpdy — Qdx = ﬂ (6x + ag) dxdy (xzyPi +QQ(: Y)

flux = double integral of “divergence”
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Curl & Divergence (2D Version)

Divergence:
“a Dot product of V and F”

0 0 0

d0x dy 0z

P(x,y) Q(xy) O
V-F=P,+Q,

S) 3 1

R . convergence

O

.

MATH252 by B.-W. Shen

92 San Diego State Univ. Spring 2025



Tangential and Normal Vectors

The unit tangent vector is

7 ( dx dy )
JdxZ +dy? \Jdx? + dy?

T -
Tds = (dx,dy)| along a (closed) boundary
o o
n The unit normal vector is
4 d —dx
=TXxk = ( 4 , ,O)
== A parameterization: Jax? +dy? \Jdx? + dy?

r(t) = (x,y)

n ds = (dy,—dx)| crossing a curve or surface
& =

= The derivative of the vector r is
dr(t) = (dx, dy)

J ok
+ ¥ = Tx

dxdyO
0 0 1

1
= —(dy, —dx, 0
ds(y x,0)

?T‘l

1
T ds
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Tangential and Normal Vectors

double check: T - 71 = 0

The unit tangent vector is

Tds = (dx, dy)
W o

along a (closed) boundary

55 F-Tds =£§£ Pdx + Qdy} circulation

The unit normal vector is

nds = (dy,—dx)
E::, —

crossing a curve or surface

55 F-Ads =[f Pdy — de} flux
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Circulation (tangential) and Flux (normal)

yA

=Y

0

DEFINITIONS  Ifr(¢) parametrizes a smooth curve C in the domain of a continu-
ous velocity field F, the flow along the curve from 4 = r(a)to B = r(b) is

tangential Flow = /F-Tds. =Jde+Qdy (5)
JC

The integral in this case is called a flow integral. If the curve starts and ends at the
same point, so that 4 = B, the flow is called the{ circulation] around the curve.

DEFINITION If C is a smooth simple closed curve in the domain of a contin-
uous vector field F = P(x,y)i + Q(x,y)j in the plane, and if n is the outward-
pointing unit normal vector on C, th@f F across C is

normal Flux of F across C = /F-nds. = dey—de (6)
C
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