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Green’s Theorem

= 𝑃! + 𝑄"

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

= 𝑄! − 𝑃"

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

𝑃 𝑄

𝑑𝑥 𝑑𝑦

= 𝑃𝑑𝑥 + 𝑄𝑑𝑦

-𝑃𝑑𝑥 + 𝑄𝑑𝑦 = .
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦

𝑃 𝑄

𝑑𝑥 𝑑𝑦

= 𝑃𝑑𝑦 − 𝑄𝑑𝑥

-𝑃𝑑𝑦 − 𝑄𝑑𝑥 = .
𝜕𝑃
𝜕𝑥

+
𝜕𝑄
𝜕𝑦

𝑑𝑥𝑑𝑦

T
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T
𝑟

𝑟 + Δ𝑟

𝑇 = "⃗!

|"⃗!|
≈ (𝑟 + Δ𝑟) − 𝑟
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Topics to be discussed

potential function ß  line integral à  double integral

-𝐹⃗ / 𝑇 𝑑𝑠

- 𝐹⃗ / 𝑇 𝑑𝑠 =2𝛻×𝐹⃗ / 𝑘 𝑑𝑥𝑑𝑦

0 = -𝑑𝑓 = -∇𝑓 / 𝑑𝑟 =

;
$
𝐹⃗ / 𝑇𝑑𝑠;

%

&
𝛻𝑓 / d𝑟 =𝑓 𝑏 − 𝑓 𝑎 =

A closed curve

zero order ß  1st order à  2nd order
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tangential 

no
rm

al
 no
rm

al 

Tangential vs. Normal 
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T

Green’s Theorem (tangential form)

= 𝑄! − 𝑃"

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

𝑃 𝑄

𝑑𝑥 𝑑𝑦

= 𝑃𝑑𝑥 + 𝑄𝑑𝑦 = 𝑃, 𝑄 ⋅ 𝑑𝑟

.
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦

= 𝑃, 𝑄 ⋅ (𝑑𝑥, 𝑑𝑦)

𝑇 =
𝑑𝑟
𝑑𝒓

=
(𝑑𝑥, 𝑑𝑦)
𝑑𝑠

-𝑃𝑑𝑥 + 𝑄𝑑𝑦 =

(𝑑𝑥, 𝑑𝑦) = 𝑇𝑑𝑠

= 𝑃, 𝑄 ⋅ 𝑇𝑑𝑠

circulation (or work) = double integral of “curl”
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∇×𝐹⃗ =

𝑖 𝑗 𝑘
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦) 0

Curl & Divergence (2D Version) 

∇×𝐹⃗ = 𝑘 𝑄B − 𝑃C

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦) 0

Divergence: 
“a Dot product of 𝛻 and 𝐹”

𝛻 / 𝐹 = 𝑃B +𝑄C

Curl:
“a Cross product of 𝛻 and 𝐹”

5 3 1
convergence

5

3

1
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Green’s Theorem (tangential form) 

-𝐹⃗ / 𝑇 𝑑𝑠 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦 =2
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 𝑑𝑥𝑑𝑦

- 𝐹⃗ / 𝑛 𝑑𝑠 = -𝑃𝑑𝑦 − 𝑄𝑑𝑥 =2
𝜕𝑃
𝜕𝑥 +

𝜕𝑄
𝜕𝑦 𝑑𝑥𝑑𝑦

𝑛 = 𝑇×𝑘 =
1
𝑑𝑠

𝑖 𝑗 𝑘
𝑑𝑥 𝑑𝑦 0
0 0 1

=
1
𝑑𝑠 𝑑𝑦,−𝑑𝑥, 0

Tangential  
Form

Normal
Form

circulation

flux

Normal Vector
 𝑛	 / 𝑇 = 0

(note that the gradient of a function indicates the direction of the normal vector)

2 𝑐𝑢𝑟𝑙

2 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

Tom C.

N. D.
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16.4 Green’s Theorem: Positive Orientation

Counterclockwise orientation 

The curve is oriented so that the 
region D is always on the left as the 
curve is traversed. 

è Along the entire boundary C of 
D in such a sense that D is on
the left as we advance in the 
direction of integration
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16.4 Green’s Theorem

Counterclockwise orientation 

The curve is oriented so that the 
region D is always on the left as the 
curve is traversed. 

circulation (or work) = double integral of “curl”
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16.4 Green’s Theorem

represents the 
positively oriented 
boundary curve of D

∂D

Notation 

Double integral <--> Line integral 

integral <--> function evaluation

Recall: 
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16.4 Green’s Theorem (A proof)

Goals 

RHS

LHS

Supp
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16.4 Green’s Theorem

- 𝐹⃗ ? 𝑇 𝑑𝑠 = - 𝐹⃗ ? 𝑑𝑟
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16.4 Green’s Theorem: 1D Integral à 2D Integral

- 𝐹⃗ ? 𝑇 𝑑𝑠 = - 𝐹⃗ ? 𝑑𝑟

- 𝐹⃗ ? 𝑑𝑟 = - 𝑥#, 𝑥𝑦 ? (𝑑𝑥, 𝑑𝑦)

.
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦 = . 𝑦 − 0 𝑑𝑥𝑑𝑦

𝑃, 𝑄 = 𝑥#, 𝑥𝑦

= A
$

%

A
$

%&!

𝑦 𝑑𝑦	𝑑𝑥 = A
$

%
𝑦'

2 $

%&!

𝑑𝑥

= A
$

%
1 − 𝑥 '

2
𝑑𝑥 =

1
2
𝑥(

3
− 𝑥' + 𝑥

$

%

=
1
6

Ybottom

Ytop



34MATH252 by B.-W. Shen San Diego State Univ. Spring 2025

Example  2

- 𝐹⃗ ? 𝑑𝑟 = - 3𝑦 − 𝑒)*+ !	 , 7𝑥 + 𝑦# + 1 ? (𝑑𝑥, 𝑑𝑦)

𝑃, 𝑄 = 3𝑦 − 𝑒)*+ !	 , 7𝑥 + 𝑦# + 1

.
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦 = . 7 − 3 𝑑𝑥𝑑𝑦

= 4.𝑑𝑥𝑑𝑦 = 4.𝑑𝐴 = 4 𝜋𝑟' = 36𝜋
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16.4 An Application to Compute an Area

To compute an area, we can choose

The following thee cases meet the above condition, i.e., 

LHS

= .
-

1𝑑𝐴 = 𝐴

Consider the Green’s theorem: 

vector field

𝐿𝐻𝑆 = .𝑑𝐴 = 𝐴

𝑄𝑑𝑦 𝑃𝑑𝑥

Plug either one of the 
above into the RHS

TBD
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16.4 An application to compute an area

the circle x
2

a2 +
y2

a2 =1.

𝐿𝐻𝑆 = .
-

1𝑑𝐴 = 𝐴

(𝑑𝑥, 𝑑𝑦) = −𝑎𝑠𝑖𝑛 𝑡 , acos 𝑡 𝑑𝑡

(𝑥, 𝑦) = (𝑎𝑐𝑜𝑠 𝑡 , 𝑎 sin 𝑡 )

=
1
2
A
$

'.
𝑎' cos'(𝑡) 𝑑𝑡 + 𝑎' sin'(𝑡) 𝑑𝑡 =

1
2
A
$

'.
𝑎'𝑑𝑡 = 𝜋𝑎'

𝑅𝐻𝑆 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦 =
1
2
-𝑥𝑑𝑦 − 𝑦𝑑𝑥

by computing a line integral.
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Why Line Integral?

• The above suggests that the area can be determined by the time 
evolution of the airplane's locations,(x(t), (y(t)).

• It can be done in parallel during the flights of 15 airplanes. 

TBD
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𝜃 ∈ [−𝜋, 𝜋] 𝑟 ∈ [0, 1 + cos(𝜃)]

syms theta r rmax
% r = 1 + cos(theta) %not defined

rmax= 1 + cos(theta)
int(int(r, r, 0, rmax), theta, 0, 2*pi)

Double Integral TBD
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syms x y theta

r = 1 + cos(theta)
x = r * cos(theta)
y = r * sin(theta)

int( (cos(theta) + cos(theta)^2 ) * (cos(theta) + cos(theta)^2 - sin(theta)^2), theta, 0, 2*pi)

∫ 𝑥	𝑑𝑦 = ∫ (cos 𝜃 + cos'(𝜃)) ∗ (cos 𝜃 + cos' 𝜃 − sin'(𝜃))	𝑑𝜃

.𝑑𝑥𝑑𝑦 = .𝑟𝑑𝑟𝑑𝜃 = ∫ 𝑥	𝑑𝑦 Green’s Theorem: 
     double integral and line integral 

Line Integral TBD
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∇×𝐹⃗ =

𝑖 𝑗 𝑘
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦) 0

Curl & Divergence (2D Version) 

∇×𝐹⃗ = 𝑘 𝑄B − 𝑃C

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦) 0

Divergence: 
“a Dot product of 𝛻 and 𝐹”

𝛻 / 𝐹 = 𝑃B +𝑄C

Curl:
“a Cross product of 𝛻 and 𝐹”

5 3 1
convergence

5

3

1
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Rotation Field

• Counter-clockwise Circulation

• 𝛻×𝐹⃗ ⋅ 𝒌 > 0 

• Clockwise Circulation

• 𝛻×𝐹⃗ ⋅ 𝒌 < 0 
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16.4 Green’s Theorem (Vector Form)

Counterclockwise orientation 

The curve is oriented so that the 
region D is always on the left as the 
curve is traversed. 

è Along the entire boundary C of D in such a 
sense that D is on the left as we advance in the 
direction of integration

- 𝐹⃗ ? 𝑇 𝑑𝑠 = .𝛻×𝐹⃗ ? 𝑘 𝑑𝑥𝑑𝑦vector form

-𝑃𝑑𝑥 + 𝑄𝑑𝑦 = .
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦
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16.4 Example 4

The curve is oriented so that the region 
D is always on the left as the curve is 
traversed. 

- 𝐹⃗ ? 𝑑𝑟 = - 𝑦', 3𝑥𝑦 ? (𝑑𝑥, 𝑑𝑦)

𝑃, 𝑄 = 𝑦', 3𝑥𝑦

.
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦 = . 3𝑦 − 2𝑦 𝑑𝑥𝑑𝑦

- 𝐹⃗ ? 𝑇 𝑑𝑠 = .𝛻×𝐹⃗ ? 𝑘 𝑑𝑥𝑑𝑦

𝑪𝟏

𝑪𝟐
𝑪𝟑

𝑪𝟒
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Example 4: Double Integral (.continued)

.
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦 = . 3𝑦 − 2𝑦 𝑑𝑥𝑑𝑦

= .𝑦𝑑𝐴 = A
$

.

A
%

'

𝑟𝑠𝑖𝑛(𝜃)𝑟𝑑𝑟𝑑𝜃

= A
$

.
𝑟(

3 %

'

𝑠𝑖𝑛 𝜃 𝑑𝜃 = −
7
3
𝑐𝑜𝑠 𝜃 $

.

=
14
3
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Example 4: Line Integrals (.continued)

-𝐹⃗ / 𝑑𝑟 = ;
$"D$#D$$D$%	

𝐹⃗ / 𝑑𝑟

𝑪𝟏

𝑪𝟐

𝑪𝟑

𝑪𝟒

CI: 𝑥, 𝑦 = (2𝑐𝑜𝑠 𝑡 , 2𝑠𝑖𝑛 𝑡 )

CJ: 𝑥, 𝑦 = (𝑡, 0)

t	 ∈ [𝜋, 0]

t	 ∈ [−2,−1]

CK: 𝑥, 𝑦 = (𝑐𝑜𝑠 𝑡 , 𝑠𝑖𝑛 𝑡 )

t	 ∈ [0, 𝜋]

CL: 𝑥, 𝑦 = (𝑡, 0) t	 ∈ [1,2]

The curve is oriented so that the region 
D is always on the left as the curve is 
traversed. 
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-𝐹⃗ / 𝑑𝑟 = ;
$"D$#D$$D$%	

𝐹⃗ / 𝑑𝑟

CI: 𝑥, 𝑦 = (2𝑐𝑜𝑠 𝑡 , 2𝑠𝑖𝑛 𝑡 )

CJ: 𝑥, 𝑦 = (𝑡, 0)

t	 ∈ [𝜋, 0]

t	 ∈ [−2,−1]

CK: 𝑥, 𝑦 = (𝑐𝑜𝑠 𝑡 , 𝑠𝑖𝑛 𝑡 )

t	 ∈ [0, 𝜋]

CL: 𝑥, 𝑦 = (𝑡, 0) t	 ∈ [1,2]

;
$&
𝐹⃗ / 𝑑𝑟 =

−16 +
64
3

0

2 −
8
3

0

=
14
3

Example 4: Line Integrals (.continued)
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𝑪𝟏

𝑪𝟐

𝑪𝟑

𝑪𝟒

Example 4 (details, C1)

A
3!	
𝐹⃗ ? 𝑑𝑟 =A

3!	
𝑦'𝑑𝑥 + 3𝑥𝑦𝑑𝑦

C%: 𝑥, 𝑦 = (2𝑐𝑜𝑠 𝑡 , 2𝑠𝑖𝑛 𝑡 ) t	 ∈ [0, 𝜋]

𝑑𝑥, 𝑑𝑦 = (−2𝑠𝑖𝑛 𝑡 , 2𝑐𝑜𝑠 𝑡 )

= A
$

.
−8 sin( 𝑡 𝑑𝑡 + 24 cos' 𝑡 sin 𝑡 𝑑𝑡

= A
$

.
−8 (1 − c𝑜𝑠' 𝑡 )sin(𝑡)𝑑𝑡 + 24 cos' 𝑡 sin 𝑡 𝑑𝑡

= A
$

.
−8 sin 𝑡 𝑑𝑡 + 32 cos' 𝑡 sin 𝑡 𝑑𝑡

= 8cos(𝑡) $
. −

32
3

cos((𝑡) $
.

= −16 +
64
3
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Example 4 (details, C3)

A
3"	
𝐹⃗ ? 𝑑𝑟 =A

3"	
𝑦'𝑑𝑥 + 3𝑥𝑦𝑑𝑦

C(: 𝑥, 𝑦 = (𝑐𝑜𝑠 𝑡 , 𝑠𝑖𝑛 𝑡 ) t	 ∈ [𝜋, 0]

𝑑𝑥, 𝑑𝑦 = (−𝑠𝑖𝑛 𝑡 , 𝑐𝑜𝑠 𝑡 )

= A
.

$
− sin( 𝑡 𝑑𝑡 + 3 cos' 𝑡 sin 𝑡 𝑑𝑡

= A
.

$
− (1 − cos' 𝑡 )sin(𝑡)𝑑𝑡 + 3 cos' 𝑡 sin 𝑡 𝑑𝑡

= A
.

$
− sin 𝑡 𝑑𝑡 + 4 cos' 𝑡 sin 𝑡 𝑑𝑡

= cos(𝑡) .
$ −

4
3
cos((𝑡) .

$

= 2 −
8
3
	

𝑪𝟏

𝑪𝟐

𝑪𝟑

𝑪𝟒
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Ex5: Whirlpool Field: Double Integral

  

2𝛻×𝐹⃗ / 𝑘 𝑑𝑥𝑑𝑦 = -𝐹⃗ / 𝑇 𝑑𝑠 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐿𝐻𝑆 =2
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 𝑑𝑥𝑑𝑦

=2
𝑦J − 𝑥J

𝑥J + 𝑦J J	 −
𝑦J − 𝑥J

𝑥J + 𝑦J J	 𝑑𝑥𝑑𝑦

𝐿𝐻𝑆 = 0	? ? ? Solve



68MATH252 by B.-W. Shen San Diego State Univ. Spring 2025

Ex5: Whirlpool Field: Line Integral (.continued)

Circulation 

3. Whirlpool Field

2𝛻×𝐹⃗ / 𝑘 𝑑𝑥𝑑𝑦 = -𝐹⃗ / 𝑇 𝑑𝑠 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝑅𝐻𝑆 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦 = -
−𝑦

𝑥J + 𝑦J 𝑑𝑥 +
𝑥

𝑥J + 𝑦J 𝑑𝑦

(𝑑𝑥, 𝑑𝑦) = −𝑎𝑠𝑖𝑛 𝑡 , 𝑎 cos 𝑡 𝑑𝑡

(𝑥, 𝑦) = (𝑎𝑐𝑜𝑠 𝑡 , 𝑎 sin 𝑡 )

= ;
M

JN 𝑎J sinJ(𝑡)
aJ 𝑑𝑡 +

𝑎J cosJ(𝑡)
aJ 𝑑𝑡

= ;
M

JN
𝑑𝑡 = 2𝜋 = 𝑅𝐻𝑆

Solve
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Ex5: Whirlpool Field  (with a singularity) 

2𝛻×𝐹⃗ / 𝑘 𝑑𝑥𝑑𝑦 = -𝐹⃗ / 𝑇 𝑑𝑠 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐿𝐻𝑆 = 0	? ? ? 𝑅𝐻𝑆 = 2𝜋

𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 =

𝑦J − 𝑥J

𝑥J + 𝑦J J	 −
𝑦J − 𝑥J

𝑥J + 𝑦J J	

Recall

𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 = 0	 𝑒𝑥𝑐𝑒𝑝𝑡	𝑎𝑡 𝑥, 𝑦 = (0,0)

analyze
(discuss)

(interpret) 
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Failure of existing rules is the prelude to a search 
for new ones. (Gleick, 1987)
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Two Cases with Positive Orientation

• A simply connected domain (left): Along the entire boundary C of D 
in such a sense that D is on the left as we advance in the direction of 
integration.

D

• A region that is not simply connected (right): Region D whose 
boundary C consists of two parts: C1 is traversed 
counterclockwise, while C2 is traversed clockwise in such a way 
that D is on the left for both curves.
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𝑪𝟏

𝑪𝟐

Annular Ring (for removing a singularity) 

𝑥' + 𝑦' = 𝑎'

𝑥' + 𝑦' = 𝝐𝟐

𝑡𝑖𝑛𝑦	 𝝐	

Remove a singularity at the origin
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When a singularity appears …

Determine the path/curve for the line integral

C1
C2

C1=C
C2=-C’

-𝐹⃗ / 𝑑𝑟 = ;
$"D$#	

𝐹⃗ / 𝑑𝑟
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When a singularity appears …

1. Remove the singularity

2. Determine the boundaries

3. Determine the orientation   

-𝐹⃗ / 𝑑𝑟 = ;
$"D$#	

𝐹⃗ / 𝑑𝑟

• A	positive	orientation
 	leads	to	𝐶I + 𝐶J;	

• 𝐶I	appears	to	have	a	counter − clockwise	orientation;	
• 𝐶J	appears	to	have	a	clockwise	orientation;	
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Ex5: Whirlpool Field (with a singularity) 

2𝛻×𝐹⃗ / 𝑘 𝑑𝑥𝑑𝑦 = -𝐹⃗ / 𝑇 𝑑𝑠 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 = 0	 𝑒𝑥𝑐𝑒𝑝𝑡	𝑎𝑡 𝑥, 𝑦 = (0,0)

Remove the singularity at the origin DO: 	ε < 𝑥J + 𝑦J ≤ 𝑎J
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 = 0	 𝑖𝑛	𝐷P

2
Q'

𝛻×𝐹⃗ / 𝑘	𝑑𝑥𝑑𝑦 = 0

However, the region has “two” boundary curves now.
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16.4 Extended Versions of Green’s Theorem

D1

D2

The boundary of D1 is illustrated by a green curve, 
denoted as g*.

The boundary of D2 is illustrated by a blue curve, 
denoted as b*.

2
Q#

𝛻×𝐹⃗ / 𝑘	𝑑𝑥𝑑𝑦 = ;
&∗
𝐹⃗ / 𝑇𝑑𝑠

2
Q"

𝛻×𝐹⃗ / 𝑘	𝑑𝑥𝑑𝑦 = ;
S∗
𝐹⃗ / 𝑇𝑑𝑠

2
Q'

𝛻×𝐹⃗ / 𝑘	𝑑𝑥𝑑𝑦 = ;
S∗
𝐹⃗ / 𝑇𝑑𝑠 +;

&∗
𝐹⃗ / 𝑇𝑑𝑠 = ;

$"D$#
𝐹⃗ / 𝑇𝑑𝑠
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Ex5: Whirlpool Field (with a singularity) 

DO: 	ε < 𝑥J + 𝑦J ≤ 𝑎J
However, the region has “two” boundary curves now.

𝑅𝐻𝑆 = -𝐹⃗ / 𝑑𝑟 = ;
$"
𝐹⃗ / 𝑑𝑟 +;

$#
𝐹⃗ / 𝑑𝑟

Recall 𝐿𝐻𝑆 =2
Q'

𝛻×𝐹⃗ / 𝑘	𝑑𝑥𝑑𝑦 = 0

;
$"
𝐹⃗ / 𝑑𝑟 +;

$#
𝐹⃗ / 𝑑𝑟 = 0

;
$"
𝐹⃗ / 𝑑𝑟 = −;

$#
𝐹⃗ / 𝑑𝑟 = ;

T$#
𝐹⃗ / 𝑑𝑟 = ;

$U"	
𝐹⃗ / 𝑑𝑟 = 2𝜋

𝐿𝑒𝑡	𝐶′I = −𝐶J	Thus,
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Ex5: Whirlpool Field (with a singularity) 

DO: 	ε < 𝑥J + 𝑦J ≤ 𝑎J

A
3!
𝐹⃗ ? 𝑑𝑟 = A

34!	
𝐹⃗ ? 𝑑𝑟

.
-#

𝛻×𝐹⃗ ? 𝑘	𝑑𝑥𝑑𝑦 = 0

Consider the following domain 

.
-

𝛻×𝐹⃗ ? 𝑘	𝑑𝑥𝑑𝑦 = 0

Since 𝛻×𝐹⃗ = 0 and 𝐶' = −𝐶′,  we have

A
3
𝐹⃗ ? 𝑑𝑟 + A

3$
𝐹⃗ ? 𝑑𝑟 = 0

A
3
𝐹⃗ ? 𝑑𝑟 = A

3!
𝐹⃗ ? 𝑑𝑟 = 2𝜋
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A Summary for Example 5 (with a singularity) 

  

2
Q'

𝛻×𝐹⃗ / 𝑘	𝑑𝑥𝑑𝑦 = -𝐹⃗ / 𝑇 𝑑𝑠 = ;
$
𝐹⃗ / 𝑇𝑑𝑠 +;

T$U
𝐹⃗ / 𝑇𝑑𝑠

2
Q'

𝛻×𝐹⃗ / 𝑘	𝑑𝑥𝑑𝑦 = 0

;
$
𝐹⃗ / 𝑑𝑟 = ;

$U
𝐹⃗ / 𝑑𝑟 = 2𝜋 𝐵𝑜𝑡ℎ	𝐶	𝑎𝑛𝑑	𝐶4𝑎𝑝𝑝𝑒𝑎𝑟	𝑡𝑜	ℎ𝑎𝑣𝑒	

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒	𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛.	

𝐷P
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A3: A Summary (Whirlpool Field)

Pdx +Qdy( ) =
C∫ Pdx +Qdy( )

C '∫

Both C and C’ are counterclockwise.

∇×F
!"
⋅ k
"
= 0

𝐷!
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(a) (b)

C1 C2 C3

𝑥/𝑎 𝑥/𝑎

𝑦/
𝑎
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16.4 Extended Versions of Green’s Theorem

D: a finite union of simple regions.  

The boundary of D1  is C1∪C3.

The boundary of D2  is C2 ∪ (−C3).

 D =D1∪D2,  and its boundary is C=C1∪C2.

D1

D2

The boundary of D1 is 
illustrated by a green 
curve.

The boundary of D2 is 
illustrated by a blue curve.
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Sumary: Green’s Theorem

= 𝑃! + 𝑄"

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

= 𝑄! − 𝑃"

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

𝑃 𝑄

𝑑𝑥 𝑑𝑦

= 𝑃𝑑𝑥 + 𝑄𝑑𝑦

-𝑃𝑑𝑥 + 𝑄𝑑𝑦 = .
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦

𝑃 𝑄

𝑑𝑥 𝑑𝑦

= 𝑃𝑑𝑦 − 𝑄𝑑𝑥

-𝑃𝑑𝑦 − 𝑄𝑑𝑥 = .
𝜕𝑃
𝜕𝑥

+
𝜕𝑄
𝜕𝑦

𝑑𝑥𝑑𝑦

T
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Green’s Theorem

= 𝑃! + 𝑄"

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

= 𝑄! − 𝑃"

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

𝑃 𝑄

𝑑𝑥 𝑑𝑦

= 𝑃𝑑𝑥 + 𝑄𝑑𝑦

-𝑃𝑑𝑥 + 𝑄𝑑𝑦 = .
𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

𝑑𝑥𝑑𝑦

𝑃 𝑄

𝑑𝑥 𝑑𝑦

= 𝑃𝑑𝑦 − 𝑄𝑑𝑥 -𝑃𝑑𝑦 − 𝑄𝑑𝑥 =

T

.
𝜕𝑃
𝜕𝑥

+
𝜕𝑄
𝜕𝑦

𝑑𝑥𝑑𝑦

flux = double integral of “divergence”

circulation (or work) = double integral of “curl”
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∇×𝐹⃗ =

𝑖 𝑗 𝑘
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦) 0

Curl & Divergence (2D Version) 

∇×𝐹⃗ = 𝑘 𝑄B − 𝑃C

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦) 0

Divergence: 
“a Dot product of 𝛻 and 𝐹”

𝛻 / 𝐹 = 𝑃B +𝑄C

Curl:
“a Cross product of 𝛻 and 𝐹”

5 3 1
convergence

5

3

1
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n

T(0,0)

A parameterization: 
r(t) =  (x, y)

The derivative of the vector r is
dr(t) = (dx, dy)

r

The unit tangent vector is 

The unit normal vector is 

Tangential and Normal Vectors

𝑇 =
𝑑𝑥

𝑑𝑥' + 𝑑𝑦'
,

𝑑𝑦

𝑑𝑥' + 𝑑𝑦'

𝑛 = 𝑇×𝑘 =
𝑑𝑦

𝑑𝑥' + 𝑑𝑦'
,

−𝑑𝑥

𝑑𝑥' + 𝑑𝑦'
, 0

𝑇𝑑𝑠 = 𝑑𝑥, 𝑑𝑦

𝑛	𝑑𝑠 = 𝑑𝑦, −𝑑𝑥

along a (closed) boundary 

crossing a curve or surface

𝑛 = 𝑇×𝑘 =
1
𝑑𝑠

𝑖 𝑗 𝑘
𝑑𝑥 𝑑𝑦 0
0 0 1

=
1
𝑑𝑠

𝑑𝑦, −𝑑𝑥, 0
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n

T(0,0) r

The unit tangent vector is 

The unit normal vector is 

Tangential and Normal Vectors

𝑇𝑑𝑠 = 𝑑𝑥, 𝑑𝑦

𝑛	𝑑𝑠 = 𝑑𝑦, −𝑑𝑥

along a (closed) boundary 

crossing a curve or surface

- 𝐹⃗ ? 𝑇 𝑑𝑠 = -𝑃𝑑𝑥 + 𝑄𝑑𝑦 circulation

- 𝐹⃗ ? 𝑛 𝑑𝑠 = -𝑃𝑑𝑦 − 𝑄𝑑𝑥 fluxdouble check: 𝑇 ⋅ 𝑛 = 0
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Circulation (tangential) and Flux (normal)

= #𝑃𝑑𝑥 + 𝑄𝑑𝑦

= #𝑃𝑑𝑦 − 𝑄𝑑𝑥

tangential

normal




