
Supplemental Materials
for Math 252 Calculus III, Spring 2025

by Bo-Wen Shen

The supplemental materials with a summary in Table 1 are provided to help students review the
following topics:

(1) vector fields; (2) gradient and normal vector; (3) curl and circulation;

(4) divergence and flux; (5) line integrals; (6) double integrals;

(7) fundamental theorem of line integrals;

(8) conservative fields and independence of path;

(9) Green’s theorem in both the tangential and normal forms;

(10) a comparison amongst Green’s, Stokes’ and Divergence theorems.
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4. 2D Electrical Field 

Figure 1: Four vector fields described in Eqs. A1-A4.

Let C be a circle, x2 + y2 = a2, C’ be a circle, x2 + y2 = ε2, D be the region 0 ≤ x2 + y2 ≤ a2, and Ds

be the region 0< ε2 ≤ x2 + y2 ≤ a2. Let F⃗ = (P,Q) be one of the vector fields in Figure 1 as follows:

(1) Uniform rotation field, (−y, x); (A1)

(2) Uniform expansion field, (x , y); (A2)

(3) Whirlpool field, ( −y
x2+y2 , x

x2+y2 ); and (A3)

(4) 2D electrical field, ( x
x2+y2 , y

x2+y2 ). (A4)

Solve the following problems using Eqs. (A1-A4).
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1: Let F⃗ be the vector in Eq. A1.
(a) Find

¸
C F⃗ · T⃗ ds;

(b) Find
´ ´

D∇× F⃗ · k⃗dA;
(c) Compare the results in (a) and (b). (e.g., p1108; p1138)

(a) Using Eq. (A1), we have
˛

C
F⃗ · T⃗ ds =

˛
C

Pd x +Qd y =
˛

C
xd y − yd x (1.1)

Assume
x = acos(θ ) and y = asin(θ ).

Then, we have
d x = −asin(θ )dθ and d y = acos(θ )dθ .

Thus, the line integral above becomes

˛
C

xd y − yd x =
ˆ 2π

0
a2cos2θdθ + a2sin2θdθ = a2

ˆ 2π

0
dθ = 2πa2. (1.2)

(b) ˆ ˆ
D
∇× F⃗ · k⃗dA=

ˆ ˆ
�∂Q
∂ x
−
∂ P
∂ y

�

d xd y

With Eq. A1, we have
∂Q
∂ x
−
∂ P
∂ y
=
∂

∂ x
(x)−

∂

∂ y
(−y) = 2.

Assuming
x = rcos(θ ) and y = rsin(θ ),

the double integral above becomes

ˆ ˆ
�∂Q
∂ x
−
∂ P
∂ y

�

d xd y =
ˆ ˆ

2d xd y = 2
ˆ 2π

0

ˆ a

0
rdrdθ

= 2
ˆ 2π

0

a2

2
dθ = 2πa2. (1.3)

(c) Equations (1.1)-(1.3) lead to
ˆ ˆ

D
∇× F⃗ · k⃗dA=

˛
C

F⃗ · T⃗ ds. (1.4)

The above states Green’s theorem in the plane, which helps to transform line integrals into double
integrals, or conversely, double integrals into line integrals. More specifically, Green’s theorem in
the tangential form in Eq. (1.4) states that the double integral of the vertical component of a curl
vector, ⃗∇× F · k⃗, over the region D along C is equal to the line integral of the tangential component
of the vector, F⃗ · T⃗ , along C (i.e., "circulation" ).
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(Optional) Eq. (1.4) can help explain the physical meaning of a curl vector, ∇× F⃗ . The mean value
theorem for double integrals says that if D is simply connected, then there exists at least one point
M(x0, y0) in D such that we have

ˆ ˆ
D

g(x , y)d xd y = g(x0, y0)A, (1.5)

where g =∇× F⃗ · k⃗ and A is the area of D. From Eqs. (1.4)-(1.5), we obtain

g(x0, y0) =
1
A

ˆ ˆ
D
∇× F⃗ · k⃗ =

1
A

˛
C

F⃗ · T⃗ ds. (1.6)

We can select a point N(x1, y1) in D and let D shrink down onto N so that the maximum distance
d(D) from the points of D to N goes to zero. Therefore, M(x0, y0)must approach N . Hence, Eq. (1.6)
becomes

∇× F⃗(x1, y1) · k⃗ = lim
d(D)→0

1
A

˛
C

F⃗ · T⃗ ds, (1.7)

which relates the the vertical component of a curl vector to the ratio of the circulation to the area.

2: Let F⃗ be the vector in Eq. A2.
(a) Find

¸
C F⃗ · n⃗ds;

(b) Find
´ ´

D∇ · F⃗ dA;
(c) Compare the results in (a) and (b). (e.g., p1109)

(a) Using Eq. (A2), we have
˛

C
F⃗ · n⃗ds =

˛
C

Pd y −Qd x =
˛

C
xd y − yd x (2.1)

Assume
x = acos(θ ) and y = asin(θ ).

Then, we have
d x = −asin(θ )dθ and d y = acos(θ )dθ .

The line integral above becomes
˛

C
xd y − yd x =

ˆ 2π

0
a2cos2θdθ + a2sin2θdθ = a2

ˆ 2π

0
dθ = 2πa2. (2.2)

(b) ˆ ˆ
D
∇ · F⃗ dA=

ˆ ˆ
�∂ P
∂ x
+
∂Q
∂ y

�

d xd y

With Eq. A2, we have
∂ P
∂ x
+
∂Q
∂ y
=
∂

∂ x
(x) +

∂

∂ y
(y) = 2.

Assume
x = rcos(θ ) and y = rsin(θ ),
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the above double integral becomes

ˆ ˆ
�∂ P
∂ x
+
∂Q
∂ y

�

d xd y =
ˆ ˆ

2d xd y = 2
ˆ 2π

0

ˆ a

0
rdrdθ

= 2
ˆ 2π

0

a2

2
dθ = 2πa2. (2.3)

(c) Equations (2.1)-(2.3) lead to
ˆ ˆ

D
∇ · F⃗ dA=

˛
C

F⃗ · n⃗ds. (2.4)

The above states a second vector form of Green’s theorem in the plane. Similarly, it helps to transform
line integrals into double integrals, or conversely, double integrals into line integrals. In contrast to
Eq. (1.4), Green’s theorem in the normal form, in Eq. (2.4), says that the double integral of the
divergence of a vector field, ∇ · F⃗ , over the region D enclosed by C is equal to the line integral of the
normal component of the vector, F⃗ · n⃗, along C (i.e., "flux").
(Optional) Eq. (2.4) can help explain the physical meaning of the divergence of a vector field, ∇ · F⃗ .
The mean value theorem for double integrals says that if D is simply connected, then there exists at
least one point M(x0, y0) in D such that we have

ˆ ˆ
D

g(x , y)d xd y = g(x0, y0)A, (2.5)

where g =∇ · F⃗ and A is the area of D. From Eqs. (2.4)-(2.5), we obtain

g(x0, y0) =
1
A

ˆ ˆ
D
∇ · F⃗ =

1
A

˛
C

F⃗ · n⃗ds. (2.6)

We can select a point N(x1, y1) in D and let D shrink down onto N so that the maximum distance
d(D) between the points from D to N goes to zero. Therefore, M(x0, y0) must approach N . Hence,
Eq. (2.6) becomes

∇ · F⃗(x1, y1) = lim
d(D)→0

1
A

˛
C

F⃗ · n⃗ds, (2.7)

which relates the divergence of a vector to the ratio of the flux to the area.
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3: Let F⃗ be the vector in Eq. A3.
(a) Find

¸
C F⃗ · T⃗ ds;

(b) Find
´ ´

Ds
∇× F⃗ · k⃗dA;

(c) Compare the results in (a) and (b). (e.g., p1140; p1135)

(a) Using Eq. A3, we have˛
C

F⃗ · T⃗ ds =
˛

C
Pd x +Qd y =

˛
C

−y
x2 + y2

d x +
x

x2 + y2
d y. (3.1)

Assume
x = acos(θ ) and y = asin(θ ).

Then, we have
d x = −asin(θ )dθ and d y = acos(θ )dθ .

The line integral above becomes
˛

C

−y
x2 + y2

d x +
x

x2 + y2
d y =

ˆ 2π

0

a2sin2θ

a2
dθ +

a2cos2θ

a2
dθ =

ˆ 2π

0
dθ = 2π. (3.2)

(b) Since F⃗ in Eq. A3 has a singularity at (x , y) = (0,0), we consider a region Ds that is bounded by
C1 and C2, which are counterclockwise-oriented and clockwise-oriented circles, respectively, as shown
in Figure 2. Therefore, F⃗ has continuous partial derivatives on an open region that contains Ds. Using
Eq. A3, we have

∇× F⃗ · k⃗ =
∂Q
∂ x
−
∂ P
∂ y
=
∂

∂ x

� x
x2 + y2

�

−
∂

∂ y

� −y
x2 + y2

�

=
y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
= 0. (3.3)

Therefore, we have ˆ ˆ
Ds

∇× F⃗ · k⃗dA= 0. (3.4)

(c) From equations (3.2) and (3.4), we observe different answers. Why? It is because F⃗ has a sin-
gularity at (x , y) = (0,0). If we assume C = C1 and C ′ = −C2 in Figure 2, Green’s Theorem can be
extended to the region Ds with the positively orentied boundary C ∪ (−C ′), leading toˆ ˆ

Ds

∇× F⃗ · k⃗dA=
˛

C
F⃗ · T⃗ ds+

˛
−C ′

F⃗ · T⃗ ds.

From the above equation and Eq. (3.4), we obtain˛
C

F⃗ · T⃗ ds =
˛

C ′
F⃗ · T⃗ ds. (3.5)

(Optional) Note that ∇ · F⃗ = 0 when r ̸= 0 and r =
p

x2 + y2, as shown below.

∇ · F⃗ =
�∂ P
∂ X
+
∂Q
∂ y

�

=
∂

∂ x

� −y
x2 + y2

�

+
∂

∂ y

� x
x2 + y2

�

=
2x y

x2 + y2
+
−2x y
x2 + y2

= 0. (3.6)

(Optional) Can we can obtain a potential function f such that F⃗ =∇ f ?
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4: Let F⃗ be the vector in Eq. A4.
(a) Find

¸
C F⃗ · n⃗ds;

(b) Find
´ ´

Ds
∇ · F⃗ dA;

(c) Compare the results in (a) and (b).

(a) Using Eq. (A4), we have
˛

C
F⃗ · n⃗ds =

˛
C

Pd y −Qd x =
ˆ

C

x
x2 + y2

d y −
y

x2 + y2
d x . (4.1)

Assume
x = acos(θ ) and y = asin(θ ).

We have
d x = −asin(θ )dθ and d y = acos(θ )dθ .

Thus, the line integral above becomes

˛
C

x
x2 + y2

d y −
y

x2 + y2
d x =

ˆ 2π

0

a2cos2θ

a2
dθ +

a2sin2θ

a2
dθ =

ˆ 2π

0
dθ = 2π. (4.2)

(b) Since F⃗ in Eq. A4 has a singularity at (x , y) = (0,0), we consider a region Ds that is bounded by
C1 and C2, which are counterclockwise-oriented and clockwise-oriented circles, respectively, as shown
in Figure 2. Therefore, F⃗ has continuous partial derivatives on an open region that contains Ds. Using
Eq. A4, we have

∇ · F⃗ =
∂ P
∂ x
+
∂Q
∂ y
=
∂

∂ x

� x
x2 + y2

�

+
∂

∂ y

� y
x2 + y2

�

=
y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
= 0, (4.3)

−
4

−
2

0
2

4

C1C1

C2

C1C1

C2

Figure 2: A diagram for the curves C and C ′, which are indicated by C1 and −C2, respectively.
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which leads to ˆ ˆ
Ds

∇ · F⃗ dA= 0. (4.4)

(c) From equations (4.2) and (4.4), we observe different answers, which are related to the singularity
at (x , y) = (0, 0). If we assume C = C1 and C ′ = −C2 in Figure 2, Green’s Theorem in the normal
form can be extended to the region Ds with the positively oriented boundary C ∪ (−C ′), leading to

ˆ ˆ
Ds

∇ · F⃗ dA=
˛

C
F⃗ · n⃗ds+

˛
−C ′

F⃗ · n⃗ds.

With the above equation and Eq. (4.4), we have
˛

C
F⃗ · n⃗ds =

˛
C ′

F⃗ · n⃗ds. (4.5)

(Optional) Note that ∇× F⃗ = 0 when r ̸= 0 and r =
p

x2 + y2, as shown below.

∇× F⃗ · k⃗ =
�∂Q
∂ X
−
∂ P
∂ y

�

=
∂

∂ x

� y
x2 + y2

�

−
∂

∂ y

� x
x2 + y2

�

=
−2x y
x2 + y2

−
−2x y
x2 + y2

= 0. (4.6)

(Optional) Here we discuss how to obtain a potential function for the vector field in Eq. A4, ( x
x2+y2 , y

x2+y2 ).
By the definition of a potential function, F⃗ =∇ f , we have

fx =
∂ f
∂ x
=

x
x2 + y2

, (4.7a)

and

f y =
∂ f
∂ y
=

y
x2 + y2

. (4.7b)

From Eq. (4.7a), we have f = ln
p

x2 + y2+ g(y). We then calculate f y , which is equal to y
x2+y2 + g y ,

and plug it into Eq. (4.7b) to obtain g y=0 and, thus, g = c, here c is a constant. Without loss of
generality, we can choose c = 0 and thus have the potential function as follows:

f = ln
p

x2 + y2. (4.8)

5: Let F⃗ be the vector in Eq. A2 and f be the potential function. Let C0 be any curve from point A
(i, j) to point B (k, l). Therefore, C0 can be either C1 + C2 or C3, as shown in Figure 3.
(a) Find

´
C1+C2

F⃗ · d r⃗;
(b) Find

´
C3

F⃗ · d r⃗;
(c) Find a potential function such that F⃗ =∇ f ;
(d) Calculate

´ B
A ∇ f · d r⃗;

(e) Compare the results from (a)-(d).

(a) ˆ
C1+C2

F⃗ · d r⃗ =
ˆ

C1

F⃗ · d r⃗ +
ˆ

C2

F⃗ · d r⃗ =
ˆ

C1

(xd x + yd y) +
ˆ

C2

(xd x + yd y)
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=
ˆ k

i
xd x +

ˆ l

j
yd y =

1
2

�

k2 − i2 + l2 − j2
�

(5.1)

(b) Along the line segment C3, we have (x , y) = (i, j) + t(k − i, l − j), t = 0 − 1, and (d x , d y) =
(k− i, l − j)d t. The line integral along C3 is:

ˆ
C3

F⃗ · d r⃗ =
ˆ

C3

(xd x + yd y) =
ˆ 1

0

��

i + t(k− i)
�

(k− i)d t +
�

j + t(l − j)
�

(l − j)d t
�

= i(k− i)t

�

�

�

�

1

0

+ (k− i)2
t2

2

�

�

�

�

1

0

+ j(l − j)t

�

�

�

�

1

0

+ (l − j)2
t2

2

�

�

�

�

1

0

= i(k− i) +
1
2
(k− i)2 + j(l − j) +

1
2
(l − j)2

=
1
2

�

k2 − i2 + l2 − j2
�

. (5.2)

(c) For the vector field in Eq. A2, F⃗ = (x , y), and the definition of a potential function, F⃗ =∇ f , we
have

fx =
∂ f
∂ x
= x , (5.3a)

� 
��

��

���� ��

���� 	�

��� ��

Figure 3: A diagram for the line segments C1, C2 and C3.
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and

f y =
∂ f
∂ y
= y. (5.3b)

From Eq. (5.3a), we have f = x2/2 + g(y), giving f y = g y . Plugging f y=g y into Eq. (5.3b), we
obtain g = y2/2+ c, where c is a constant. Without loss of generality, we can choose c = 0 and thus
have the potential function as follows.

f =
1
2
(x2 + y2). (5.4)

(d) Therefore, ˆ B

A
F⃗ · d r⃗ =

ˆ B

A
∇ f · dr = f (B)− f (A) =

1
2
(k2 + l2 − i2 − j2). (5.5)

(e) The integrals in (a) and (b) provide the same answer as that in (d) for the integral using the
potential function. These results indicate the path independence of line integrals.

6: (Optional) Let F⃗ represent the 3D vector field,

F⃗ =
(x , y, z)

r3
, r =
p

x2 + y2 + z2,

Sa be the surface x2 + y2 + z2 = a2, Sε be the surface x2 + y2 + z2 = ε2, and D3 be the region
0< ε2 ≤ x2 + y2 + z2 ≤ a2.
(a) Find the net outward flux, i.e.,

˝
D3
∇ · F⃗ dV ;

(b) Find the outward flux across the sphere Sa, i.e.,
˜

Sa
F⃗ · n⃗dS;

(c) Compare the results in (a) and (b). (See also p1184)

(a) Let (P,Q, R) represent the vector F⃗ , where ∇ · F⃗ = Px +Q y + Rz. We first calculate Px , Q y and Rz

as follows.

Px =
∂

∂ x
x
r3
=

y2 + z2 − 2x2

(x2 + y2 + z2)5/2
=

y2 + z2 − 2x2

r5
.

Similarly, we can obtain

Q y =
x2 + z2 − 2y2

r5
and Rz =

x2 + y2 − 2z2

r5
.

Therefore, we have
∇ · F⃗ = Px +Q y + Rz = 0 when r ̸= 0, (6.1)

leading to ˚
D3

∇ · F⃗ dV = 0. (6.2)

(b) By defining g = x2 + y2 + z2 = a2, a normal vector is determined as

n⃗1 =
∇g
|∇g|

=
(x , y, z)

a
.
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Thus, we have
¨

Sa

F⃗ · n⃗1dS =
¨

Sa

(x , y, z)
a3
·
(x , y, z)

a
dS =

¨
Sa

dS
a2
=

4πa2

a2
= 4π. (6.3)

(c) ˚
D3

∇ · F⃗ dV = 0=
¨

Sa

F⃗ · n⃗1dS +
¨

Sε

F⃗ · (−n⃗0)dS,

where −n⃗0 is the normal vector of the surface Sε, as shown in Figure 4. Thus, we have
¨

Sa

F⃗ · n⃗1dS =
¨

Sε

F⃗ · n⃗0dS = 4π. (6.4)

7: Here, for a comparison with problem 6, we re-formulate the problem 4 as follows. Let F⃗ represent
the 2D vector field,

F⃗ =
(x , y)

r2
, r =
p

x2 + y2,

and Ds be the region 0< ε2 ≤ x2 + y2 ≤ a2.
(a) Find the net outward flux, i.e.,

˜
Ds
∇ · F⃗ dS;

(b) Find the outward flux across the circle x2 + y2 = a2, i.e.,
¸

C F⃗ · n⃗ds;
(c) Compare the results in (a) and (b).

(a) Based on what has been discussed in problem 4, we have

∇ · F⃗ = 0 when r ̸= 0, (7.1)

and ¨
Ds

∇ · F⃗ dS = 0. (7.2)

(b) By defining g = x2 + y2 = a2, a normal vector is determined as

n⃗1 =
∇g
|∇g|

=
(x , y)

a
.

Thus, we have
˛

C
F⃗ · n⃗1ds =

˛
C

(x , y)
a2
·
(x , y)

a
ds =

˛
C

x2 + y2

a3
ds =

1
a

˛
C

ds =
2πa

a
= 2π. (7.3)

(c) ¨
Ds

∇ · F⃗ dS = 0=
˛

C
F⃗ · n⃗1ds+

˛
C ′

F⃗ · (−n⃗0)ds,

here −n⃗0 is the normal vector of the circle C ′: x2 + y2 = ε2. Therefore, we have
˛

C
F⃗ · n⃗1ds =

˛
C ′

F⃗ · n⃗0ds = 2π. (7.4)
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Sa 

Sε 

n
!
1

−n
!
0

Figure 4: A diagram for the surfaces Sa and Sε and their normal vectors, n⃗1 and n⃗0, respectively.
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F
!"
= Pi
"
+Q j
"
+ Rk
"

∇⋅F
!"
=
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

P, Q, and R

Table 1: A Summary

P    Q    R
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