Supplemental Materials
for Math 252 Calculus III, Spring 2025
by Bo-Wen Shen

The supplemental materials with a summary in Table 1 are provided to help students review the
following topics:

(1) vector fields; (2) gradient and normal vector; (3) curl and circulation;
(4) divergence and flux; (5) line integrals; (6) double integrals;

(7) fundamental theorem of line integrals;

(8) conservative fields and independence of path;

(9) Green’s theorem in both the tangential and normal forms;

(10) a comparison amongst Green’s, Stokes’ and Divergence theorems.
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Figure 1: Four vector fields described in Eqs. A1-A4.

Let C be a circle, x* + y* = a?, C’ be a circle, x> + y> = €2, D be the region 0 < x*> + y? < d?, and D,
be the region 0 < €? < x? + y? < a. Let F = (P,Q) be one of the vector fields in Figure 1 as follows:

(1) Uniform rotation field, (—y, x); (A1)
(2) Uniform expansion field, (x, y); (A2)
(3) Whirlpool field, (#yyz, #yz); and (A3)

(4) 2D electrical field, (xz_f—yz, #)/2)‘ (A4)
Solve the following problems using Eqs. (A1-A4).



1: Let F be the vector in Eq. Al.

(a) Find ¢, F-Tds;

(b) Find [ [, V x F - kdA;

(c) Compare the results in (a) and (b).

(e.g., p1108; p1138)

(a) Using Eq. (A1), we have

ygﬁ-fds:§£de+Qdy=§£xdy—ydx
c c c

x =acos(0) and y =asin(6).

Assume

Then, we have

dx =—asin(0)d0 and dy =acos(0)d6.

Thus, the line integral above becomes

2 27
ygxdy—ydx:/ a’cos*0d0 + a’sin*6d0 =a2/
c 0 0

[ [vxFfaa= [ [(GE-FD)axay

oQ dp 0 0
L = L (x)—=(—y)=2
dx Ody 8x(x) 8y( y)

(b)

With Eq. Al, we have

Assuming
x =rcos(8) and y=rsin(0),

the double integral above becomes

(1.1)

d6 =2ma?. (1.2)

// 3_Q_8_§ dxdy = //dedy 2/ / rdrdf

—2/ a—d9—271:a.
o 2

//Vxﬁ%dA:%ﬁ-Tds.
D c

(c) Equations (1.1)-(1.3) lead to

(1.3)

(1.4)

The above states Green’s theorem in the plane, which helps to transform line integrals into double
integrals, or conversely, double integrals into line integrals. More specifically, Green’s theorem in
the tangentlal form in Eq. (1.4) states that the double integral of the vertical component of a curl
vector, V X F - k, over the region D along C is equal to the line integral of the tangential component

of the vector, E- T, along C (i.e., "circulation" ).



(Optional) Eq. (1.4) can help explain the physical meaning of a curl vector, V x F. The mean value
theorem for double integrals says that if D is simply connected, then there exists at least one point
M(x,, ¥o) in D such that we have

/ / g0,y )dxdy = g(xo, yo)A, (15)

where g =V x F -k and A is the area of D. From Egs. (1.4)-(1.5), we obtain

1 S - 1 (o -
g(xo,J’o)ZZ//DVXF-szygF-Tds. (1.6)

We can select a point N(x;, y;) in D and let D shrink down onto N so that the maximum distance
d(D) from the points of D to N goes to zero. Therefore, M(x,, y,) must approach N. Hence, Eq. (1.6)
becomes

= - 1 - -
V x F(x;, k= lim - @ F-Tds, 1.7
(X1, 1) d(D)-»OA&é (1.7)

which relates the the vertical component of a curl vector to the ratio of the circulation to the area.

2: Let F be the vector in Eq. A2.

(a) Find gﬁc F -fids;

(b) Find [ [, V- FdA;

(c) Compare the results in (a) and (b). (e.g., p1109)

(a) Using Eq. (A2), we have

ygﬁfids:%de—de:;lgxdy—ydx (2.1)
Cc C C

x =acos(6) and y =asin(0).

Assume

Then, we have
dx =—asin(0)d0 and dy =acos(0)d6.

The line integral above becomes

2 27
%xdy—deZ/ a*cos*0d0 + a*sin*6d o =a2/ dO = 2ma?. (2.2)
c 0 0
® 8P 8
//V FdA= // Q d dy
With Eq. A2, we have
op 9Q 0 %,
dx Jdy ax(x) 3y(y)

Assume
x =rcos(8) and y=rsin(0),
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the above double integral becomes

27
/ 6J—P+8—Qd dy //dedy 2/ / rdrd6

- 2/ « 10— 2na. (2.3)
0

//v-ﬁdAzygﬁ-ﬁds. (2.4)
D C

The above states a second vector form of Green’s theorem in the plane. Similarly, it helps to transform
line integrals into double integrals, or conversely, double integrals into line integrals. In contrast to
Eq. (1.4), Green’s theorem in the normal form, in Eq. (2.4), says that the double integral of the
divergence of a vector field, V - F, over the region D enclosed by C is equal to the line integral of the
normal component of the vector, E- i, along C (i.e., "flux").

(Optional) Eq. (2.4) can help explain the physical meaning of the divergence of a vector field, V - F.
The mean value theorem for double integrals says that if D is simply connected, then there exists at
least one point M(x,, y,) in D such that we have

(c) Equations (2.1)-(2.3) lead to

/ / g0,y )dxdy = g(x0, yo)A, 25)

where g =V F and A is the area of D. From Egs. (2.4)-(2.5), we obtain

1 L1 (o
g(xO,y0)=;\//DV-F=;‘§I§F-nds. (2.6)

We can select a point N(x;, y;) in D and let D shrink down onto N so that the maximum distance
d(D) between the points from D to N goes to zero. Therefore, M(x,, y,) must approach N. Hence,
Eq. (2.6) becomes

1
V-F(x,y,)= d(ll'%no;l 55 F -ids, (2.7)

which relates the divergence of a vector to the ratio of the flux to the area.



3: Let F be the vector in Eq. A3.

(a) Find ¢, F-Tds;

(b) Find [ fDS V x F - kdA;

(c) Compare the results in (a) and (b). (e.g., p1140; p1135)

(a) Using Eq. A3, we have

F-Tds= @ Pdx+Qdy = dx + dy. 3.1
yg s 515 x+Qdy §l§x2+y2x x2+y2y (3.1)

x =acos(0) and y =asin(0).

Assume

Then, we have
dx =—asin(0)d60 and dy =acos(8)df.

The line integral above becomes

_ 2T 2 s 2 2 2 2m
;5 Y x4 —> dy:/ a’sin’0 1g 4 2CO8 9d9:/ do = 2. (3.2)
C 0 0

(b) Since F in Eq. A3 has a singularity at (x, y) = (0,0), we consider a region D, that is bounded by
C; and C,, which are counterclockwise-oriented and clockwise-oriented circles, respectively, as shown
in Figure 2. Therefore, F has continuous partial derivatives on an open region that contains D,. Using
Eq. A3, we have

+ =0. 3.3

//vXﬁ-EdAzo. (3.4)
DS

(¢) From equations (3.2) and (3.4), we observe different answers. Why? It is because F has a sin-
gularity at (x,y) = (0,0). If we assume C = C; and C’ = —C, in Figure 2, Green’s Theorem can be
extended to the region D, with the positively orentied boundary C U (—C’), leading to

//vXﬁ.'zsz:yﬁﬁ.deyﬁ B 7ds.
Ds C —C’

From the above equation and Eq. (3.4), we obtain

yﬁﬁ -Tds = 35 F-Tds. (3.5)
C Cc’

(Optional) Note that V - F=0whenr # 0 and r = 4/x2 + y2, as shown below.

— 2 _ .2 2_ .2
UxFR=2Q 9P _G X y 0 Ty y_ Yyox Xy
dx Jdy Jdx x2+y2’ Jdy x2+4+y? (

Therefore, we have

-

V-F=(

oP 0Q 0 -y d x 2xy —2xy
+5)=5=( )+ 5= ( )

-— = -— =0. 3.6
oX Jdy x2+y2’ Jdy x2+y? (3.6)

= — = + =
dx x2+y2 x2+y2

(Optional) Can we can obtain a potential function f such that F = Vf?
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4: Let F be the vector in Eq. A4.

(a) Find ﬁcﬁ -fds;

(b) Find [ [, V- FdA;

(c) Compare ‘the results in (a) and (b).

(a) Using Eq. (A4), we have

F-fids= @ Pdy —Qdx = dy — dx. NI
9% fids yé y—Qdx /sz+y2 y X1 y? X (4.1)

Assume
x =acos(0) and y =asin(6).
We have
dx =—asin(0)d0 and dy =acos(0)d6.

Thus, the line integral above becomes

21 2 2 205192 27
X y a“cos“6 a‘sin“6 /
— = = :2 . 2
§éx2+y2dy x2+y2dx /0 " o + " do ; do =2m (4.2)

(b) Since F in Eq. A4 has a singularity at (x, y) = (0,0), we consider a region D, that is bounded by
C, and C,, which are counterclockwise-oriented and clockwise-oriented circles, respectively, as shown
in Figure 2. Therefore, F has continuous partial derivatives on an open region that contains D,. Using
Eq. A4, we have

2

. 0P 0Q 0 X d y y*—x? xt—y
V' F=—+4+—= ( 2 2)+_( 5 2): 2 22+ 2 22
x24+y oy ‘x2+y (x2+y2) (x2+y2)

= — 0 3
dx Jdy 0Ox ’ (4.3)

T T T T T

Figure 2: A diagram for the curves C and C’, which are indicated by C; and —C,, respectively.



which leads to

//st-ﬁdAzo. (4.4)

(c) From equations (4.2) and (4.4), we observe different answers, which are related to the singularity
at (x,y) = (0,0). If we assume C = C; and C’ = —C, in Figure 2, Green’s Theorem in the normal
form can be extended to the region D, with the positively oriented boundary C U (—C’), leading to

//V~ﬁdA:§1§ﬁ-ﬁds+y§ I -7ids.
D, C —C’

With the above equation and Eq. (4.4), we have

yﬁﬁ -fids = 55 F - fids. (4.5)
Cc c’
(Optional) Note that V x F = 0 when r # 0 and r = 4/x2 + y2, as shown below.

RS

oX Jdy

- o oQ 0P 0 y 0 X —2xy —2xy
VXF'k:( ) (x2+y2)_5(x2+y2):x2+y2_x2+y2:O' (4.6)

(Optional) Here we discuss how to obtain a potential function for the vector field in Eq. A4, (

x y
x2+y2 5 X2+_y2 )‘
By the definition of a potential function, F = Vf, we have

_of  x
and of
Yy
fi=5, =y (4.7b)

From Eq. (4.7a), we have f =1n4/x2+ y2+ g(y). We then calculate f,, which is equal to #yz +8y»
and plug it into Eq. (4.7b) to obtain g,=0 and, thus, g = c, here c is a constant. Without loss of
generality, we can choose ¢ = 0 and thus have the potential function as follows:

f =1lny/x2+ y2 (4.8)

5: Let F be the vector in Eq. A2 and f be the potential function. Let C, be any curve from point A
(i,j) to point B (k,1). Therefore, C, can be either C; + C, or C;, as shown in Figure 3.

(a) Find fc1+c2ﬁ -d7;

(b) Find [, F-d7;

(c) Find a potential function such that F=v f;

(d) Calculate |, AB Vf -d?;

(e) Compare the results from (a)-(d).

/Cl+C2

(a)

T
Q
=l

Il

\

~
Q

=

+

/ﬁ-d?z (xdx+ydy)+/(xdx+ydy)
Cy Cy

G



k l
1
=/ xdx+/ydy=§(k2—i2+lz—j2)
i J

(5.1)

(b) Along the line segment C;, we have (x,y) = (i,j)+ t(k—i,l —j), t =0—1, and (dx,dy) =

(k—1i,l —j)dt. The line integral along Cj is:

/Cﬁ-d?z/c(xdx+ydy)=/01|:(i+t(k—i))(k—i)dt+(j+t(l—j))(l—j)dt]

1

+jl— )t
0

1 511

t
+(1—7)P2—
( 1)2

1 2

— i(k—i)t +(k—i)2%

0 0 0

= itk =)+ (k= + U= )+ 5 U~

= %(kz—i2+lz—j2).

(5.2)

(¢) For the vector field in Eq. A2, F=(x, y), and the definition of a potential function, F=v f,we

have

_of _
==

fx

X,

AL ) (k. j)

Figure 3: A diagram for the line segments C;, C, and Cs.

(5.3a)



and

_9f _
=3, "
From Eq. (5.3a), we have f = x*/2 + g(y), giving f, = g,. Plugging f,=g, into Eq. (5.3b), we
obtain g = y%/2 + ¢, where c is a constant. Without loss of generality, we can choose ¢ = 0 and thus
have the potential function as follows.

fy . (5.3b)

f =20+, (5.4

(d) Therefore, . .
/ F.dr =/ Vf-dr=f(B)—f(A)= %(k2 +1%2—i%2—j). (5.5)
A A

(e) The integrals in (a) and (b) provide the same answer as that in (d) for the integral using the
potential function. These results indicate the path independence of line integrals.

6: (Optional) Let F represent the 3D vector field,

- (x,y,2
F=( J ), r=+vx2+y2+22

r3

S, be the surface x? + y? + 2> = a?, S, be the surface x? + y? + 2> = €2, and D, be the region
0<e*<x*+y*+2z2<d’

(a) Find the net outward flux, i.e., ffst Vv .-Fdv;

(b) Find the outward flux across the sphere S, i.e., || fSa F-Ads;

(c) Compare the results in (a) and (b). (See also p1184)

(a) Let (P Q,R) represent the vector F,where V-F = P, +Q, +R,. We first calculate P, Q, and R,
as follows.

0 x  y*+z22-2x>  y*+z*—2x?

T oxrd (X2+y2+22p2 rs
Similarly, we can obtain
2,2 2 2,2 2
x“+z°—=2y x“+y“—2z
Q,= e and R, = e
Therefore, we have
V-F=P.,+Q,+R,=0 whenr #0, (6.1)

leading to
/// V-Fdv =0. (6.2)
Dy
(b) By defining g = x>+ y? + 2% = a®, a normal vector is determined as

. _ Vg (xy,2)
n, = = .
Vgl a
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Thus, we have

//F mds = //(x 22 y’Z)dS // 4m =47, (6.3)
///D3V-ﬁdV=0=//Saﬁ-ﬁ1ds+//seﬁ.(_ﬁ0)ds’

where —ii, is the normal vector of the surface S., as shown in Figure 4. Thus, we have

// F-#i,dS =// F-#,dS = 4. (6.4)
Sa Se

7: Here, for a comparison with problem 6, we re-formulate the problem 4 as follows. Let F represent
the 2D vector field,

(o

and D, be the region 0 < €2 < x2 + y2 < .

(a) Find the net outward flux, i.e., [[, b V- Fds;

(b) Find the outward flux across the circle x* + y* = a?, i.e., §. F -fids;
(c) Compare the results in (a) and (b).

(a) Based on what has been discussed in problem 4, we have

V-F=0 whenr#0, (7.1)

//D V-FdS=0. (7.2)

S

and

(b) By defining g = x> + y? = a?, a normal vector is determined as

MTVel T
Thus, we have
- , , 24 y? 1 2
§I§F-ﬁ1ds= (xy)-(xy)ds=§£X yds=-9§ds=ﬂ=zn. (7.3)
c c a2 a c ad ajc a

(©

// v-ﬁdszozygﬁ-ﬁlds+§z§ﬁ-(—ﬁo)ds,
D, C Cc’

S

here —fi, is the normal vector of the circle C’: x>+ y? = €. Therefore, we have

%ﬁ A, ds = 55 F -fiyds = 2. (7.4)
C /
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Figure 4: A diagram for the surfaces S, and S, and their normal vectors, i, and i, respectively.

Table 1: A Summary

Formulas for Grad, Div, Curl, and the Laplacian
The Fundamental Theorem of Line Integrals

Cartesian (x, y; S
. ?r esian (x, y, Z) 1. Let F=Pi+Qj+Rk be a vector field whose components are
L) and k are unit vectors continuous throughout an open connected region D in space. Then
in the directions of there exists a differentiable function / such that
increasing x, y, and z _ Vf=(;—fi+‘?—‘f'+(?—f
P,Q,and R gre the ax dy az .
! ts of if and only if for all points A and Bin D the value of .[A F - dris inde-
scalar components o pendent of the path joining A to Bin D.
F(x, . 2) in these 2. If the integral is independent of the path from A to B, its value is
directions. 2
of of of / F-dr = f(B) — f(A).
Gradient Vf=—i+—j+—k 4
dx dy 9z
p
Divergence | \/ . f = opP + Y + IR Green’s Theorem (Tangential Form) ffV x F - kdxdy = _(ﬁF-er
Jdx dy 0z LR
P
i j k , [ [
S Stokes’ Theorem | curl F - dS = ) F - dr
Curl VxF=|2 2 2 $
Jdx dy dz
P Q R Green’s Theorem (Normal Form) ffV-I—’dxdy - 4;1?.,] ds W
R J
.2 .2 2
i oy 0F  0F 0 (e i
Laplacian | V°f P oy 2 Divergence Theorem m div F av =ffF'n ds
UE
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