Chaos and Predictability:

  1. Shen, B.-W., R. A. Pielke Sr., X. Zeng, I. A. Santos, S. Faghih-Naini, J. Buchmann, R. Atlas, 2017: Butterfly Effects of the First and Second Kinds in Lorenz Models. Submitted to AMS 2018 annual meeting.
  2. Shen, B.-W. and  S. Faghih-Naini, 2017: On recurrent solutions within high-dimensional non-dissipative Lorenz models: the role of the nonlinear feedback loop. The 10th Chaos Modeling and Simulation International Conference (CHAOS2017), Barcelona, Spain, 30 May - 2 June, 2017.   (slides) (pdf)

  3. Faghih-Naini, S. and B.-W. Shen, 2017: On quasi-periodic solutions associated with the extended nonlinear feedback loop in the five-dimensional non-dissipative Lorenz model.

    The 10th Chaos Modeling and Simulation International Conference (CHAOS2017), Barcelona, Spain, 30 May - 2 June, 2017.  (slides) (pdf)

  4. Shen, B.-W., 2016c: On periodic solutions associated with the nonlinear feedback loop in the non-dissipative Lorenz model. Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-40.

  5. Shen, B.-W., 2017: On an extension of the nonlinear feedback loop in a nine-dimensional Lorenz model. Chaotic Modeling and Simulation (CMSIM), 2: 147–157, 2017. (pdf)

  6. Shen, B.-W., 2016a: Hierarchical scale dependence associated with the extension of the  nonlinear feedback loop in a seven-dimensional Lorenz model. Nonlin. Processes Geophys., 23, 189-203, doi:10.5194/npg-23-189-2016, 2016. (link) (pdf)

  7. Shen, B.-W., 2015b: Nonlinear Feedback in a Six-dimensional Lorenz Model. Impact of an additional heating term. Nonlin. Processes Geophys., 22, 749-764, doi:10.5194/npg-22-749-2015, 2015. (link) (pdf)

  8. Shen, B.-W., 2015a: Parameterization of Negative Nonlinear Feedback using a Five-dimensional Lorenz Model. Fractal Geometry and Nonlinear Anal in Med and Bio. 1, 33-41, doi: 10.15761/FGNAMB.1000109 (pdf)

  9. Shen, B.-W., 2014b: On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz model. Nonlin. Processes Geophys. Discuss., 1, 519-541, doi:10.5194/npgd-1-519-2014, 2014. (pdf)

  10. Shen, B.-W., 2014a: Nonlinear Feedback in a Five-dimensional Lorenz Model. J. of Atmos. Sci.71, 1701–1723. doi: (pdf

  11. Shen, B.-W., and N.-H. Lin, 1995: A Theoretical Study of the Effects of an Isolated Mountain on Particle Deposition. J. of Atmos. Sci., 23, Taipei, Taiwan (in Chinese), 237-264.

Global Hurricane Modeling and Multiscale Modeling:

  1. Shen, B.-W., 2017: Forecasting Tropical Cyclogenesis with a Global Mesoscale Model: Results for Six Tropical Cyclones in May 2002.  Fish & Ocean Opj. 2017; 4(1): 555626. DOI: 10.19080/OFOAJ.2017.04.555626.  (invited)

  2. Shen, B.-W., 2015: Simulations and Visualizations of Hurricane Sandy (2012): Multiscale Processes vs. Butterfly Effect. APEC Research Center for Typhoon and Society (ACTS) Newsletter, Vol. 5, No. 3, 12-15. December, 2015. (pdf)

  3. Shen, B.W., M. DeMaria, J.-L. F. Li, and S. Cheung, 2013c: Genesis of Hurricane Sandy (2012) Simulated with a Global Mesoscale Model. Geophys. Res. Lett. 40. 2013, DOI: 10.1002/grl.50934. (link)

  4. Shen, B.-W. W.-K. Tao, Y.-L. Lin, A. Laing2012: Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves. J. Geophys. Res., 117, D13114, doi:10.1029/2012JD017450. (link)

  5. Shen, B.-W., W.-K. Tao, and M.-L. Wu, 2010b: African Easterly Waves in 30-day High-resolution Global Simulations: A Case Study during the 2006 NAMMA Period. Geophys. Res. Lett., 37, L18803, doi:10.1029/2010GL044355. (pdf) (supplemental)

  6. Shen, B.-W., W.-K. Tao, W. K. Lau, R. Atlas, 2010a: Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis (2008) . J. Geophys. Res.,115, D14102, doi:10.1029/2009JD013140. A story entry derived from this article appeared in the April 2010 "Research Breakthroughs," to be disseminated by the Division of Research at the University of Maryland at College Park.(pdf)

  7. W.-K. Tao, D. Anderson, J. Chern, J. Entin, A. Hou, P. Houser, R. Kakar, S. Lang, W. Lau, C. Peters-Lidard, X. Li, T. Matsui, M. Rienecker, M. R. Schoeberl, B.-W. Shen, J. J. Shi, and X. Zeng, 2009: A Goddard Multi-Scale Modeling System with Unified Physics. Submitted to Annales Geophysicae Special Issue dedicated to The 1st International Conference on From Desert to Monsoons. Ann. Geophys., 27, 3055-3064.

  8. Shen, B.-W., R. Atlas, O. Oreale, S.-J Lin, J.-D. Chern, J. Chang, C. Henze,and J.-L. Li, 2006b: Hurricane Forecasts with a Global Mesoscale-Resolving Model: Preliminary Results with Hurricane Katrina(2005). Geophys. Res. Lett., L13813, doi:10.1029/2006GL026143. (This has been selected as an AGU Journal Highlight, and has also been highlighted in Science, 25 August, 2006) (link)

  9. Shen, B.-W., R. Atlas, J.-D. Chern, O. Reale, S.-J. Lin, T. Lee, and J.Change 2006a: The 0.125 degree Finite Volume General Mesoscale Circulation Model:Preliminary simulations of mesoscale vortices. Geophys. Res. Lett., 33, L05801, doi:10.1029/2005GL024594. (This work has been cited as a " A Global/Mesoscale Modeling Breakthrough.'')

  10. Atlas, R., O. Reale, B.-W. Shen, S.-J. Lin,J.-D. Chern, W. Putman, T. Lee, K.-S. Yeh, M. Bosilovich, and J.Radakovich, 2005: Hurricane forecasting with the high-resolution NASA finite-volume General Circulation Model, Geophysical Research Letters,32, L03801, doi:10.1029/2004GL021513.

  11. Lin, S.-J., B.-W. Shen, W. P. Putman, J.-D. Chern, 2003: Application of the high-resolution finite-volume NASA/NCAR Climate Model for Medium-Range Weather Prediction Experiments. EGS - AGU - EUG Joint Assembly, Nice, France, 6 - 11 April 2003. (Abstract)

Multiscale Analysis with the Parallel Ensemble Empirical Mode Decomposition (PEEMD):

  1. Shen, B.-W., S. Cheung, Y. Wu, F. Li, and D. Kao, 2017: Parallel Implementation of the Ensemble Empirical Mode Decomposition (PEEMD) and Its Application for Earth Science Data Analysis. Computing in Science & Engineering, vol. 19, no. , pp. 49-57, September/October 2017, doi:10.1109/MCSE.2017.3421555 (gallery)

  2. Wu, Y.-L.,and B.-W. Shen, 2016: An Evaluation of the Parallel Ensemble Empirical Mode Decomposition Method in Revealing the Role of Downscaling Processes Associated with African Easterly Waves in Tropical Cyclone Genesis. J. Atmos. Oceanic Technol. 33, 1611-1628, DOI: 10.1175/JTECH-D-15-0257.1

  3. Shen, B.-W., S. Cheung, J.-L. F. Li, and Y.-L. Wu, S. S. Shen, 2016:  Multiscale Processes of Hurricane Sandy (2012) as Revealed by the Parallel Ensemble Empirical Mode Decomposition and Advanced Visualization Technology. Advances in Data Science and Adaptive Analysis. 08, 1650005 (2016) [22 pages] DOI: (pdf)

  4. Shen, B.-W., S. Cheung, J.-L. F. Li, and Y.-L. Wu, 2013e:  Analyzing Tropical Waves using the Parallel Ensemble Empirical Model Decomposition (PEEMD) Method: Preliminary Results with Hurricane Sandy (2012),  NASA ESTO Showcase by Earthzine magazine. posted December 2, 2013. (URL)

  5. Cheung, S., B.-W. Shen, P. Mehrotra , J.-L. F. Li, 2013: Parallelization of the Ensemble Empirical Model Decomposition (PEEMD) Method on Multi- and Many-core Processors. AGU 2013 Fall Meeting, San Francisco, December 9-13. (pdf)

  6. Shen, B.-W., Z. Wu, and S. Cheung, 2012: Analysis of Tropical Cyclones and Tropical Waves using the Parallel Ensemble Empirical Model Decomposition (EEMD) Method. AGU 2012 Fall Meeting, San Francisco, December 03-07, 2012. 

High Performance Computing and Visualizations:

  1. Shen, B.-W., S. Cheung, Y. Wu, F. Li, and D. Kao, 2017: Parallel Implementation of the Ensemble Empirical Mode Decomposition (PEEMD) and Its Application for Earth Science Data Analysis. Computing in Science & Engineering, vol. 19, no. , pp. 49-57, September/October 2017, doi:10.1109/MCSE.2017.3421555 (gallery)

  2. Shen, B.-W., 2015: Using Katrina and Sandy Data to Improve Hurricane Prediction Tools. Supercomputing Conference 2015 (SC15). Austin, TX, Nov. 15-20, 2015.  (invited, pdf)

  3. Shen, B.-W., B. Nelson, S. Cheung, and W.-K. Tao, 2013b: Improving the NASA Multiscale Modeling Framework's Performance for Tropical Cyclone Climate Study. Computing in Science and Engineering,  IEEE computer Society Digital Library. IEEE Computer Society, no. 5, pp. 56-67, Sep./Oct. 2013  (pdf)

  4. Shen, B.-W., B. Nelson, W.-K. Tao, and Y.-L. Lin, 2013a, "Advanced Visualizations of Scale Interactions of Tropical Cyclone Formation and Tropical Waves," Computing in Science and Engineering, vol. 15, no. 2, pp. 47-59, March-April 2013, doi:10.1109/MCSE.2012.64 

  5. Shen, B.-W., W.-K. Tao, and B. Green, 2011: Coupling Advanced Modeling and Visualization to Improve High-Impact Tropical Weather Prediction(CAMVis), IEEE Computing in Science and Engineering (CiSE), vol. 13, no. 5, pp. 56-67, Sep./Oct. 2011, doi:10.1109/MCSE.2010.141 (impact factor: 1.42) (pdf) 

  6. Shen, B.-W., W.-K. Tao, J.-D. Chern, and R. Atlas, 2009: Scalability Improvements in the  NASA Goddard Multiscale Multicomponent Modeling Framework for Tropical Cyclone Climate Studies. HPC ASIA & APAN 2009 International Conference and Exhibition.Proceedings, p 249-256. Kaohsiung, Taiwan, March 2-5, 2009.

  7. Biswas, R., M.J. Aftosmis, C. Kiris, and B.-W. Shen, 2007: Petascale Computing: Impact on Future NASA Missions. Petascale Computing: Architectures and Algorithms, 29-46 (D. Bader, ed.), Chapman and Hall / CRC Press, Boca Raton, FL.(pdf)

  8. Putman, W., S.-J. Lin, and B.-W. Shen, 2005: Cross-Platform Performance of a Portable Communication Module and the NASA Finite Volume General Circulation Model. International Journal of High Performance Computing Applications. 19: 213-223.(pdf)

  9. Shen, B.-W., R. Atlas, W.-K. Tao, T. Lee, O. Reale, J.-D. Chern, S.-J. Lin, J. Chang, C. Henze, J.-L. Li, 2006: Experimental High-Resolution Weather/Hurricane Predictions with the NASA fvGCM. High-End Computing at NASA, 48-49. (PDF)

  10. Atlas, R., B.-W. Shen, O. Reale, J., W. Putman, J., J.-D. Chern, S.-J. Lin, M. Bosilovich, T. Lee, J. Radakovich, K.-S. Yeh, J. Ardizzone, and D. Bungato, 2004: The NASA finite-volume General Circulation Model: The 2004 hurricane season -- a high-resolution NWP application, The SC2004 High Performance Computing, Networking and Storage Conference, Pittsburgh, Pennsylvania, November 6-12, 2004. (Selected as one of the NASA top four project demonstrations at SC04; the #1 in the Science Mission Directorate)  

Network Programming: (technical reports only)

  1. Shen, B.-W., P. Fuh, and S. G. Wu, 1994: Development of Meteorological Information Service System --- The Second Generation of Current Weather Answering System. Weather Forecasting and Analysis. 140, Taipei, Taiwan (in Chinese), 24-48.

  2. Shen, B.-W., 1994: Development of the Meteorological Information Service System at the Air Force Weather Wing Center, Air Force Weather Wing., Taipei, Taiwan (in Chinese), p. 31. (pdf)

  3. Shen, B. -W., and P. Fuh, 1993: Meteorological Automatic Operation Improvement Project Part II: Transferring the Computer Meteorological Products. Weather Forecasting and Analysis. 138, Taipei, Taiwan (in Chinese), 15-26.

Thesis and Dissertation: (theoretical studies of terrain-induced gravity waves and atmospheric instability) 

  1. Shen, B.-W., 1998: Inertia Critical Layers and Their Impacts on Nongeostrophic Baroclinic Instability. Ph.D. Dissertation. North Carolina State Univ., p. 255.(pdf)

  2. Shen, B.- W., 1992: The Linear Solution of a Three-Dimensional Flow over an Isolated Mountain, Master Thesis, National Central University, Taiwan, (in Chinese), p. 85. (pdf)