Over the past several years, a series of papers regarding high-dimensional Lorenz models that have applied a different number of Fourier modes have yielded the following generalized Lorenz model (GLM) (Shen 2014-2018, 2019a, b; Shen et al. 2019; Reyes and Shen 2019; Shen et al. 2021a,b; Cui and Shen 2021; Shen et al. 2022a, b, c):
Here, τ is dimensionless time. The three integers j, M, and N are related to the number of additional Fourier modes within higher dimensional Lorenz models (LMs). While M represents the total number of modes (or equations), N indicates the total number of pairs for higher wavenumber modes that do not appear within the original L63 Model. The time-independent parameters, including σ and r, represent the Prandtl number and the normalized Rayleigh number (or the heating parameter), respectively. The heating parameter represents a measure of temperature differences between the bottom and top layers. Parameter "a" is defined as the ratio of the vertical scale of the convection cell to its horizontal scale and a2 = 1/2. The last three parameters in Eq. (6) are coefficients for the dissipative terms. Detailed discussions for each of the above terms can be found in the 2-page Supplementary Materials of Shen et al. (2021a). Variable X denotes the amplitude of the Fourier mode for the stream function. Variables (Y, Z), (Y1, Z1), (Y2, Z2), and (Y3, Z3) are referred to as the primary, secondary, tertiary, and quaternary modes, respectively, and represent the amplitudes of the Fourier modes at different wave numbers for temperature. The GLM with M = 5, 7, or 9 is referred to as the 5D-, 7D-, or 9DLM, respectively, and the classical L63 model (referred to as the 3DLM) can be obtained using Eqs. (1-3) without the nonlinear term XY1, written as follows (Lorenz 1963, 1993):