The Generalized Lorenz Model (GLM) and The Lorenz 1963 (L63) Model

Over the past several years, a series of papers regarding high-dimensional Lorenz models that have applied a different number of Fourier modes have yielded the following generalized Lorenz model (GLM) (Shen 2014-2018, 2019a, b; Shen et al. 2019; Reyes and Shen 2019; Shen et al. 2021a,b; Cui and Shen 2021; Shen et al. 2022a, b, c):

d X d τ = σ Y - σ X , (1)

d Y d τ = - X Z + r X - Y , (2)

d Z d τ = X Y - X Y 1 - b Z , (3)  

d Y j d τ = j X Z j-1 - (j+1) X Z j - d j-1 Y j , (4)  

d Z j d τ = (j+1) X Y j - (j+1) X Y j+1 - β j Z j , (5)  

N = M - 3 2 ; d j-1 = ( 2 j + 1 ) 2 + a 2 1 + a 2 ; β j = b ( j + 1 ) 2 ; b = 4 1 + a 2 . (6)

Here, τ is dimensionless time. The three integers j, M, and N are related to the number of additional Fourier modes within higher dimensional Lorenz models (LMs). While M represents the total number of modes (or equations), N indicates the total number of pairs for higher wavenumber modes that do not appear within the original L63 Model. The time-independent parameters, including σ and r, represent the Prandtl number and the normalized Rayleigh number (or the heating parameter), respectively. The heating parameter represents a measure of temperature differences between the bottom and top layers. Parameter "a" is defined as the ratio of the vertical scale of the convection cell to its horizontal scale and a2 = 1/2. The last three parameters in Eq. (6) are coefficients for the dissipative terms. Detailed discussions for each of the above terms can be found in the 2-page Supplementary Materials of Shen et al. (2021a). Variable X denotes the amplitude of the Fourier mode for the stream function. Variables (Y, Z), (Y1, Z1), (Y2, Z2), and (Y3, Z3) are referred to as the primary, secondary, tertiary, and quaternary modes, respectively, and represent the amplitudes of the Fourier modes at different wave numbers for temperature. The GLM with M = 5, 7, or 9 is referred to as the 5D-, 7D-, or 9DLM, respectively, and the classical L63 model (referred to as the 3DLM) can be obtained using Eqs. (1-3) without the nonlinear term XY1, written as follows (Lorenz 1963, 1993):

d X d τ = σ Y - σ X , (7)
d Y d τ = - X Z + r X - Y , (8)
d Z d τ = X Y - b Z . (9)  

References

  1. Lorenz, E.N., 1993: The Essence of Chaos; University of Washington Press: Seattle, WA, USA, 1993; 227p.
  2. Lorenz, E.N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141.
  3. Shen, B.-W., 2014: Nonlinear feedback in a five-dimensional Lorenz model. J. Atmos. Sci. 2014, 71, 1701–1723. http://dx.doi.org/10.1175/JAS-D-13-0223.1
  4. Shen, B.-W., 2015: Nonlinear feedback in a six-dimensional Lorenz Model: Impact of an additional heating term. Nonlin. Processes Geophys. 2015, 22, 749–764. https://doi.org/10.5194/npg-23-189-2016
  5. Shen, B.-W., 2016: Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model. Nonlin. Processes Geophys. 2016, 23, 189–203.
  6. Shen, B.-W., 2017: On an extension of the nonlinear feedback loop in a nine-dimensional Lorenz model. Chaotic Modeling Simul. 2017, 2, 147–157. (pdf)
  7. Shen, B.-W., 2019a: Aggregated Negative Feedback in a Generalized Lorenz Model. Int. J. Bifurc. Chaos 2019, 29, 1950037. https://doi.org/10.1142/S0218127419500378
  8. Shen, B.-W., 2019b: On the Predictability of 30-Day Global Mesoscale Simulations of African EasterlyWaves during Summer 2006: A View with the Generalized Lorenz Model. Geosciences 2019, 9, 281. https://doi.org/10.3390/geosciences9070281  
  9. Shen, B.-W.; Reyes, T.; Faghih-Naini, S., 2019: Coexistence of Chaotic and Non-Chaotic Orbits in a New Nine-Dimensional Lorenz Model. In Proceedings of the 11th Chaotic Modeling and Simulation International Conference, CHAOS 2018, Rome, Italy, 5–8 June 2018; Skiadas, C., Lubashevsky, I., Eds.; Springer Proceedings in Complexity. Springer: Cham, Switzerland, 2019. https://doi.org/10.1007/978-3-030-15297-0_22 
  10. Reyes, T. and B.-W. Shen, 2019: A Recurrence Analysis of Chaotic and Non-Chaotic Solutions within a Generalized Nine-Dimensional Lorenz Model. Chaos, Solitons & Fractals. 125 (2019), 1-12. https://doi.org/10.1016/j.chaos.2019.05.003
  11. Cui, J.; Shen, B.-W., 2021: A Kernel Principal Component Analysis of Coexisting Attractors within a Generalized Lorenz Model. Chaos Solitons Fractals 2021, 146, 110865.  https://doi.org/10.1016/j.chaos.2021.110865.
  12. Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R., 2021a: Is Weather Chaotic? Coexistence of Chaos and Order within a Generalized Lorenz Model. Bull. Am. Meteorol. Soc. 2021, 2, E148–E158. https://doi.org/10.1175/BAMS-D-19-0165.1
  13. Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R.; Reyes, T.A., 2021b: Is Weather Chaotic? Coexisting Chaotic and Non-Chaotic Attractors within Lorenz Models. In Proceedings of the 13th Chaos International Conference CHAOS 2020, Florence, Italy, 9–12 June 2020; Skiadas, C.H., Dimotikalis, Y., Eds.; Springer Proceedings in Complexity. Springer: Cham, Switzerland, 2021. https://doi.org/10.1007/978-3-030-70795-8_57
  14. Shen, B.-W., R. A. Pielke Sr., X. Zeng, J. Cui#, S. Faghih-Naini#, W. Paxson#, A. Kesarkar, X. Zeng, R. Atlas, 2022c: The Dual Nature of Chaos and Order in the Atmosphere. Atmosphere 13, no. 11: 1892. https://doi.org/10.3390/atmos13111892.
  15. Shen, B.-W.*, R. A. Pielke Sr., X. Zeng, J. Cui, S. Faghih-Naini, W. Paxson, R. Atlas, 2022b: Three Kinds of Butterfly Effects Within Lorenz Models. Encyclopedia 2, no. 3: 1250-1259. https://doi.org/10.3390/encyclopedia2030084 
  16. Shen, B.-W.*, R. A. Pielke Sr., X. Zeng, 2022a: One Saddle Point and Two Types of Sensitivities Within the Lorenz 1963 and 1969 Models. Atmosphere 13, no. 5: 753. https://doi.org/10.3390/atmos13050753
More