
The Annotated Guide to Logistic
Equations with Python

Olivia Zhou

and

Bo-Wen Shen*, Ph.D.

Web: http://bwshen.sdsu.edu

Department of Mathematics and Statistics

San Diego State University

Summer 2024

*Dr. Bo-Wen Shen (bshen@sdsu.edu) San Diego State University, Summer 2024

Abstract

In this report, we analyze the continuous and discrete forms of the logistic equations,

showcasing solutions derived through manual calculations, symbolic computation, and

numerical methods. We begin by introducing the logistic ordinary differential equation

(ODE), Robert May's contributions involving the logistic ODE, and Euler's method for

computing numerical solutions. Next, we outline our approach by solving the analytical

solution of the logistic ODE, deriving the logistic difference equation, which is

mathematically equivalent to the logistic map, and utilizing Python libraries SymPy,

NumPy, and Matplotlib to verify, compute, and visualize solutions. We then compare

analytical, symbolic, and numerical solutions, presenting a bifurcation diagram to

illustrate the impact of grid spacing on various solution types. Additionally, within

numerical solutions, we explore sensitive dependence on initial conditions, commonly

referred to as the butterfly effect, as well as chaos. The report concludes with a final

section summarizing our findings.

1. Introduction

1.1 Ordinary Differential Equations (ODEs) and the Logistic ODE

An ordinary differential equation, abbreviated as ODE, is an equation consisting of one

independent variable and at least one of that variable's derivatives. The order of an ODE

is defined by the highest-order derivative present in that ODE.

The logistic ODE is a first-order ODE with one linear and one quadratic term. It can be

modeled as:

,

where is a parameter.

1.2 Robert May's Work (1976)

Robert May was a theoretical physicist turned biologist. As he started pursuing ecology,

he studied the behavior of simple populations.

While testing different parameters for the logistic difference equation, which models the

behaviors of populations, May realized that increasing the value of the parameter

increased the degree of nonlinearity in his system. Nonlinearity describes a situation

where non-proportional relationships between variables lead to amplified changes. By

(1) = σu(1 − u)du

dt

σ

increasing the degree of nonlinearity in his system, the population changed from steady-

state to oscillating to unpredictable. May focused on the boundary between steadiness

and oscillation, discovering period doubling, which refers to the phenomenon where

populations suddenly oscillate between 2 values, then 4, 8, etc., until the population's

behavior becomes apparently random, exhibiting chaos.

To visualize his findings, May created bifurcation diagrams, which reflect the behavior of

populations across different values of the parameter. From these diagrams, he was able

to find windows of periodic stability within chaos, as the populations oscillated between

values of 3, 6, 12, etc., as well as between 7, 14, 28, etc.

In this report, we will explore and recreate the bifurcation diagram of the logistic

difference equation, discussing the three states May discovered: steady-state, periodic,

and chaotic. We will also explore definitions of chaos and its related concepts.

1.3 Euler's Method and The Forward Finite Difference Method

To derive the logistic difference equation, we can use Euler's method, a type of finite

difference method, to "approximate" or discretize the logistic ODE. The finite difference

method uses finite differences to approximate derivatives. It is a numerical method that

solves both ODEs and PDEs (partial differential equations) through pointwise

approximation.

The forward finite difference method is expressed as follows:

There are two other difference methods, i.e., the backward difference method, where

we write as , and the central difference method, where we write as

.

Euler's method is one of the forward finite difference methods:

 (Euler's Method)

 (Applied the forward finite difference method on

)

=du

dt

un+1−un

Δt

du

dt

un−un−1

Δt

du

dt
un+1−un−1

2Δt

un+1 = un + Δt × u′(tn,un)

un+1 = un + Δt × un+1−un

Δt

u′(tn,un)

un+1 = un + un+1 − un

un+1 = un+1

In Section 2.1.2, we will use Euler's method to derive the logistic difference equation from

the logistic ODE.

2. Methodology

2.1 Mathematical Equations and Solutions

2.1.1 Analytical Solution of the Logistic ODE

When we set the initial condition (IC) , the logistic ODE can be written as:

through the following manipulations:

PFD:

u(0) = u0

(2) u(t) = u0e
σt

1−u0+u0eσt

(1) = σu(1 − u)du

dt

∫ du = ∫ dt1
σu(1−u)

+ =A
σu

B

1−u

1
σu(1−u)

A − Au + Bσu = 1

A = 1, B = 1
σ

∫ ⋅ du + ∫ ⋅ du = ∫ dt1
σ

1
u

1
σ

1
1−u

ln |u| − ln |u − 1| = t + C1
1
σ

1
σ

ln∣∣ ∣∣ = σt + C2 (Note: C2 = σC1)u

u−1

= eσt+C2u

u−1

= C3e
σt (Note: C3 = eC2)u

u−1

Plug in t = 0 to find C3 with IC u(0) = u0:

= C3
u0

u0−1

1 + = C3e
σt1

u−1

u − 1 = 1
C3e

σt−1

2.1.2 The Logistic Difference Equation

The logistic difference equation is represented by:

.

By using the forward finite difference method, we can manipulate the logistic ODE to

solve for the logistic difference equation:

If we continue to manipulate Equation 3...

...we get Euler's method with previous term , step size , and slope of previous point

 (as represented by Equation 1, i.e., the logistic ODE)

2.1.3 The Logistic Map

The logistic map is an equation often represented as .

The logistic difference equation in this study, , and the

logistic map, , are mathematically identical. They only differ in the

absolute values of their parameters and solutions.

u = C3e
σt

C3eσt−1

From earlier: C3 =
u0

u0−1

u =
eσt

u0
u0−1

eσt−1
u0

u0−1

(2) u(t) = u0e
σt

1−u0+u0eσt

(3) un+1 = (1 + σΔt)un − σΔtu2
n

(1) = σu(1 − u)du

dt

=du

dt

Δu

Δt

= σun(1 − un)un+1−un

Δt

un+1 = Δtσun(1 − un) + un

(3) un+1 = (1 + σΔt)un − σΔtu2
n

un+1 = un + σΔtun − σΔtu2
n

un+1 = un + Δt(σun − σu2
n)

un Δt

σun − σu2
n

xn+1 = rxn(1 − xn)

un+1 = (1 + σΔt)un − σΔtu2
n

xn+1 = rxn(1 − xn)

We can show the resemblance between the logistic difference equation and logistic map

through manipulation.

 (logistic difference equation)

 (logistic map)

Let

Plug into Eq. (4):

From Eq. (3) and (A):

2.2 Fundamental Python Programming Concepts

2.2.1 SymPy

Symbolic computing, also called computer algebra, resides at the intersection between

computer science and mathematics. While numerical computing approximates solutions

by manipulating numerical values, symbolic computing provides exact solutions through

symbolic expressions and equations. Thus, the strength of symbolic computing lies in its

accurate analytical computations and efficient automation of numerical methods.

By utilizing SymPy, a Python library created for symbolic mathematics, we can easily

simplify expressions that include integrals or derivatives. Such expressions are an

important aspect of symbolic computing. Since they are also crucial to Calculus 1 and 2,

as well as other STEM classes, students can utilize SymPy to verify their answers. Due to

its efficiency, SymPy is also a great tool for simplifying complex expressions that would

otherwise be very tedious to solve.

(3) un+1 = (1 + σΔt)un − σΔtu2
n

(4) Yn+1 = ρYn(1 − Yn)

= (ρYn) − (ρY 2
n)

Yn = αun

→ Yn+1 = αun+1

αun+1 = αρun − α2ρu2
n

(A) un+1 = ρun − αρu2
n

ρ = 1 + σΔt, αρ = σΔt

∴ α = σΔt

1+σΔt

∴ Yn = αun = un
σΔt

1+σΔt

2.2.2 NumPy

NumPy is the numerical counterpart to SymPy; that is, it is a numerical computing Python

library that approximates solutions by manipulating numerical values. NumPy is based on

the ndarray object, which stands for an n-dimensional array and can create arrays of

any dimension. We will use these arrays to hold the values of the independent and

dependent variables we want to plot. NumPy's arrays also support element-wise

operations, which means that they efficiently perform operations like addition and

multiplication on all alements inside an array. This is much faster than a Python for loop.

2.2.3 Matplotlib

Matplotlib is a Python library for creating visualizations. It has a submodule called pyplot,

which provides a high-level, user friendly interface for producing and customizing plots.

Pyplot acts like MATLAB.

Below is a code snippet that demonstrates the basic function of pyplot:

import matplotlib.pyplot as plt

create arrays for (t, u) values to plot:
t = [1, 2, 3, 5]
u = [2, 4, 8, 9]

plt.plot(t,u)
plt.show()

In [2]:

Figure 1. Example of a simple plot made with Matplotlib.

While there are many pyplot functions we can use to customize our graphs, if we do not

specify any, pyplot will default to the above configuration, automatically creating the

range and frequency of tick marks on the and , or and , axes.

2.2.4 Graph of the Symbolic Solution of the Logistic ODE

Here is an example of how we can use SymPy, as well as NumPy and Matplotlib, to find

and graph the symbolic solution of the logistic ODE.

t u x y

We obtain the analytical solution of the logistic ODE by using dsolve , a SymPy function

that solves any ODE. Once we obtain the analytical solution, we need to use lambdify
to translate it to a numerical function that can be used with NumPy. After that, we create

two NumPy arrays, one for values of and one for values of , and use as inputs for

pyplot's plot function.

Below is the output of our code. We will revisit this later in Section 3.1.1.

t u

Figure 2. Symbolic solution of Equation (3), the logistic difference equation, obtained

through SymPy.

2.2.5 Graph of the Numerical and Analytical Solutions of the Logistic ODE

Using NumPy and Matplotlib, we can also create nine subplots comparing the numerical

and analytical solutions of nine different values.σΔt

Figure 3. Solutions of Equation (3), the logistic difference equation. The nine subplots

display steady-state, periodic, and chaotic behavior, as well as overflow.

We will revisit this figure later in Section 3.1.2.

2.2.6 The Logistic Bifurcation Diagram

The bifurcation diagram of the logistic difference equation is a diagram that provides an

overview of the behavior of across different values of . Here is the code to graph it,

utilizing NumPy and Matplotlib:

u σΔt

Figure 4. Bifurcation diagram of the logistic difference equation. Demonstrates the

behaviors of across different values of .

We will revisit this diagram in Section 3.1.4.

3. Python-Driven Discovery of Key Characteristics

3.1 Comparison of Symbolic, Analytical, and Numerical Analyses

3.1.1 Analytical Solution vs. Symbolic Solution

Figure 5. Two exact solutions of the logistic ODE: one symbolic solution from SymPy, and

one manually-derived analytical solution.

Here is a graph of the exact solution of the logistic ODE when Notice that there

are two curves that overlap each other. Earlier in Section 2.2.4, I explained the code for

the green curve, which utilizes the exact solution of the logistic ODE from SymPy. The

u σΔt

Δt = 0.1

orange curve is the exact solution from Equation 2, which is manually derived in Section

2.1.1.

import sympy as sp
from IPython.display import display

u = sp.Function('u')
t = sp.Symbol('t')
u_ = sp.Derivative(u(t), t)
sigma = sp.Symbol('sigma')

ana_eq = sp.dsolve(u_ - sigma * u(t) * (1 - u(t)), u(t))
display(ana_eq)

Above is some code that shows what the exact solution from SymPy is. It is the same

code we used to symbolically graph the logistic ODE using SymPy.

Here is Equation 2 for reference:

While these two equations may look different, they are actually the equivalent to each

other.

We can manipulate the equation from SymPy to show that it is equal to Equation 2:

Use to find :

Plug back into original equation:

In [3]:

u(t) =
1

C1e−σt + 1

u(t) =
u0e

σt

1−u0+u0eσt

u(0) = u0 C1

u0 = 1
C1+1

C1 = − 11
u0

C1 = 1−u0
u0

u(t) = 1

e−σt+1
1−u0
u0

u(t) =
u0

e−σt−u0e−σt+u0

u(t) = u0e
σt

1−u0+u0eσt

This is Equation 2. We have thus proved that the analytical solution we derived by hand,

i.e., Equation 2, is equivalent to the symbolic solution we found using SymPy.

3.1.2 Numerical Solutions vs. Analytical Solutions

Figure 3. Solutions of Equation (3), the logistic difference equation. The nine subplots

display steady-state, periodic, and chaotic behavior, as well as overflow.

Here is the graph we created in Section 2.2.5, which compares the behaviors of the

numerical and analytical solutions of nine different values of .

In the first two graphs, where and , the numerical solutions converge

to 1. In other words, they approach a "steady-state," making them steady-state

solutions.

In the third and fourth graphs, where and , the numerical solutions

appear to be of period 2, since they oscillate between two values.

In the fifth graph, where , the numerical solution appears to be of period

4, as it oscillates between four values.

In the sixth, seventh, and eighth graph, where , , and , the graphs

exhibit chaotic behavior, as their populations jump between apparently random

values.

The last graph, where , demonstrates what happens when the

population values overflow, i.e., grow without bound.

σΔt

σΔt = 1.8 2.0

σΔt = 2.1 2.3

σΔt = 2.5

σΔt = 2.6 2.7 3.0

σΔt = 3.01

3.1.3 Impact of Grid Spacing (i.e., Control Parameter)

Figure 6. Comparison of the numerical and analytical solutions of the logistic difference

equation under two different values of .

When we keep and the initial conditions the same but decrease , the accuracy of the

numerical solution increases. In both of the above graphs, and .

The numerical solution of the second graph, where , is much closer to the

analytical solution compared to the numerical solution of the first graph, where

, making it more accurate.

Δt

Δt

σ Δt

σ = 2 u0 = 0.001

Δt = 0.1
Δt = 0.9

3.1.4 The Bifurcation Diagram of the Logistic Difference Equation

Figure 4. Bifurcation diagram of the logistic difference equation. Demonstrates the

behaviors of across different values of .

Above is the bifurcation diagram of the logistic difference equation. I explained the code

for this in Section 2.2.6.

A bifurcation occurs when small changes in the parameter (i.e.,) cause a

"significant" change in the structure of the solutions of a system.

This bifurcation diagram reflects the behavior of the numerical solutions we previously

looked at:

 converges to 1 when is less than around 2

 is in period 2 when is between around 2 and 2.45

 is in period 4 when is between around 2.45 and before 2.55

The rest of the graph demonstrates chaos, represented by shades of blue, with

occasional periods of 3, 6, etc.

3.2 Examination of SDIC, the Butterfly Effect, and Chaos

Steven Strogatz defines chaos as “aperiodic long-termed behavior in a deterministic

system that exhibits sensitive dependence on initial conditions.” Sensitive dependence of

solutions on initial conditions, abbreviated as SDIC, is the most important factor that

defines chaos and is commonly known as the butterfly effect. The "butterfly effect,"

coined by Edward Lorenz, who proposed that the wing flaps of a small butterfly could

u σΔt

σΔt

u σΔt

u σΔt

u σΔt

cause a tornado, states that small changes in initial conditions can lead to immensely

different outcomes.

Figure 6. Time evolution of two initially nearby trajectories in the logistic difference

equation, illustrating sensitive dependence on initial conditions (SDIC) and the butterfly

effect.

SDIC can be shown through control runs and parallel runs. In the diagram above, the

control run, with , is in green, while the parallel run, with

, is in gold.

Such a small difference of between the control and parallel runs eventually

leads to completely different behaviors of . This difference is especially noticeable

after , when the control and parallel runs diverge.

4. Conclusions

In this report, we introduced the logistic ODE and discretized it to derive the logistic

difference equation, collectively referred to as the logistic equations. Although the

logistic difference equation in this study and the logistic map are mathematically

identical, they differ in the absolute values of their parameters and solutions. Using

different methods, we then explored various forms of solutions for the logistic equations,

including analytical solutions, which are exact solutions derived manually; symbolic

solutions, which are exact solutions obtained using SymPy; and numerical solutions,

which are approximate solutions obtained by solving the logistic difference equation

u0 = 0.001
u0 = 0.001 + ϵ, ϵ = 10−6

ϵ = 10−6

ut

t = 20

using a finite difference scheme. Additionally, we presented various types of numerical

solutions, which vary depending on the values of the control parameter (σΔt). These

numerical solutions can be steady-state, periodic, or chaotic (apparently random). Finally,

we discussed sensitive dependence on initial conditions, the butterfly effect, and chaos.

To support our efforts, we utilized modern Python libraries such as SymPy, NumPy, and

Matplotlib.

Author Contributions

Olivia Zhou: Formal analysis, Derivations and verifications, Software, Visualization,

Investigation, Writing.

Bo-Wen Shen: Conceptualization, Methodology, Derivations, Software, Investigation,

Writing – review.

References

Shen, B.- W., 2024: Revisiting Lorenz’s Error Growth Models: Insights. Encyclopedia

2024, 4(3), 1134-1146; https://doi.org/10.3390/encyclopedia4030073

Gleick, J. Chaos: Making a New Science; Viking Penguin: New York, NY, USA, 1987; pp.

57-80.

https://doi.org/10.3390/encyclopedia4030073

