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A recent study suggested that the nonlinear feedback loop (NFL) of the three-dimensional 
nondissipative Lorenz model (3D-NLM) serves as a nonlinear restoring force by producing non­
linear oscillatory solutions as well as linear periodic solutions near a nontrivial critical point. 
This study discusses the role of the extension of the NFL in producing quasi-periodic trajectories 
using a five-dimensional nondissipative Lorenz model (5D-NLM). An analytical solution to the 
locally linear 5D-NLM is first obtained to illustrate the association of the extended NFL and 
two incommensurate frequencies whose ratio is irrational, yielding a quasi-periodic solution. The 
quasi-periodic solution trajectory moves endlessly on a torus but never intersects itself. 

While the NFL of the 3D-NLM consists of a pair of downscaling and upscaling processes, 
the extended NFL within the 5D-NLM additionally introduces two new pairs of downscaling 
and upscaling processes that are enabled by two high wavenumber modes. One pair of down­
scaling and upscaling processes provides a two-way interaction between the original (primary) 
Fourier modes of the 3D-NLM and the newly-added (secondary) Fourier modes of the 5D-NLM. 
The other pair of downscaling and upscaling processes involves interactions amongst the sec­
ondary modes. By comparing the numerical simulations using one- and two-way interactions, 
we illustrate that the two-way interaction is crucial for producing the quasi-periodic solution. 
A follow-up study using a 7D nondissipative LM shows that a further extension of NFL, which 
may appear throughout the spatial mode-mode interactions rooted in the nonlinear temperature 
advection, is capable of producing one more incommensurate frequency. 

Keywords: Nondissipative Lorenz model; nonlinear feedback loop; quasi-periodicity. 

1. Introduction 

Over 50 years ago, Lorenz [1963] proposed an ele­
gant set of three nonlinear ordinary differential 
equations to illustrate the sensitive dependence of 
solutions on initial conditions (ICs) and challenged 

views on (long-term) deterministic predictability. 
His simple but high-impact nonlinear model is 
called the Lorenz model (LM) and, in this study, is 
referred to as the three-dimensional LM (3DLM). 
Sensitive dependence on ICs, which is known as the 
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butterfly effect of the first kind, suggests a finite pre­
dictability for weather and climate ( e.g. [Solomon 
et al., 2007; Anthes, 2011]). An inferred view that 
small scale processes may significantly alter large­
scale processes is also known as the butterfly effect 
but is referred to as the second kind of butterfly 
effect (e.g. [Shen, 2014, 2015, 2016, 2017a; Shen 
et al., 2018]). As a result of its profound impor­
tance, the 3DLM has been extensively studied and 
related research has further inspired many studies 
dealing with nonlinear dynamics (e.g. [Gleick, 1987; 
Sprott, 2003; Jordan & Smith, 2007; Hirsch et al., 
2013; Strogatz, 2015]). 

While the 3DLM clearly demonstrates solution 
dependence on ICs for chaotic solutions, high­
dimensional LMs have been derived for understand­
ing the impact of mode truncations on solution 
stability and the route to chaos (e.g. [Curry, 1978; 
Curry et al., 1984; Howard & Krishnamurti, 1986; 
Hermiz et al., 1995; Thiffeault & Horton, 1996; 
Musielak et al., 2005; Roy & Musielak, 2007a, 
2007b, 2007c]). In our recent studies using high­
dimensional LMs (e.g. [Shen, 2014, 2015, 2016]), 
we selected new modes in order to extend the 
nonlinear feedback loop that is capable of provid­
ing additional nonlinear feedback for stabilizing or 
destabilizing solutions. The 3DLM and 5DLM, as 
well as other high-dimensional Lorenz models, were 
derived from the Rayleigh-Benard convection equa­
tions that include three types of physical processes 
including heating, dissipative, and nonlinear advec­
tion (e.g. [Saltzman, 1962; Lorenz, 1963]). The non­
linear feedback loop of the 3DLM consists of a 
pair of downscaling and upscaling processes that 
describe temperature advection by various (spatial) 
Fourier modes. Mathematically, these processes are 
represented by the nonlinear terms -XZ and XY 
in the 3DLM [e.g. Eqs. (2) and (3)], respectively. 
The 5DLM has two additional (spatial) Fourier 
modes that have high wavenumbers. These newly­
added high wavenumber modes are referred to as 
secondary (spatial) modes, while the fundamental 
Fourier modes in the original 3DLM are referred to 
as primary modes. The ratio for wavenumbers in 
the primary and secondary modes is rational. 

Our approach, using incremental changes in 
the number of Fourier modes, was to help trace 
the collective impact of additional linear and non­
linear terms on solution stability as well as the 
extension of the nonlinear feedback loop. With the 
proper selection of modes, the five-dimensional LM 
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(5DLM, [Shen, 2014]) and the seven-dimensional 
LM (7DLM, [Shen, 2016]) have larger critical val­
ues, as compared to the 3DLM, for the normalized 
Rayleigh parameter for the onset of chaos. Critical 
values for the Rayleigh parameter in the 3DLM, 
5DLM, and 7DLM are 24.74, 42.9, and 116.9, 
respectively. The studies above suggest that sys­
tem stability for LMs with a finite number of modes 
can be improved using additional high wavenumber 
modes that provide a negative nonlinear feedback 
associated with additional dissipative terms. In con­
trast, as shown by comparing the six-dimensional 
LM (6DLM) with the 5DLM [Shen, 2015] as well 
as by comparing the nine-dimensional LM (9DLM) 
with the 7DLM [Shen, 2017a], positive nonlinear 
feedback associated with an additional heating term 
may destabilize solutions. Due to these findings, we 
have focused on the addition of high wavenumber 
modes for extending the nonlinear feedback such 
that the negative feedback is stronger than the pos­
itive feedback. Recently, Moon et al. [2017] dis­
cussed the dependence of solutions on a wide range 
of system parameters within the 5DLM, 6DLM and 
higher-dimensional Lorenz models. Felicio and Rech 
[2018] conducted a comprehensive analysis on the 
shape of bifurcation diagrams, periodic, and chaotic 
attractors within the 5DLM and 6DLM, showing 
hyperchaos in the 6DLM. 

Since studies using the 3DLM began, nonlin­
earity has been viewed as the source of chaos in 
the 3DLM. Some researchers have further inferred 
that systems containing more nonlinear terms may 
become more chaotic. On the other hand, by using 
the 5DLM and 7DLM we have shown that the col­
lective impact of increased degrees of nonlinearity 
and additional dissipative terms provides negative 
feedback for stabilizing solutions. The impact of an 
increased degree of nonlinearity on the solution can 
be further examined in a nondissipative system (i.e. 
with no dissipation), a simpler system with only 
heating and nonlinear terms. Using the 3D nondis­
sipative LM (3D-NLM), we found that the nonlinear 
feedback loop of the 3D-NLM serves as a nonlinear 
restoring force by producing nonlinear oscillatory 
solutions [Shen, 2017b] as well as linear periodic 
solutions near a nontrivial critical point. We addi­
tionally discussed how heating and the nonlinear 
feedback loop may collectively produce a periodic 
solution. 

From the perspective of numerical weather pre­
diction, our ultimate goal is to apply numerical 
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results obtained using idealized LMs in order to 
improve our understanding of predictability in real­
world weather/climate models [Shen et al., 2006; 
Shen et al., 2010a; Shen et al., 2013]. Specifically, it 
is important to understand if and how increased res­
olutions in weather/climate models can suppress or 
enhance chaotic responses because high-resolution 
global modeling, the current trend, requires tremen­
dous computing resources. Therefore, we extend the 
study with the 3D-NLM to the 5D-NLM. 

In addition to periodic solutions, quasi-periodic 
solutions may appear in conservative systems. 
When a system has two ( or more) components with 
different frequencies whose ratio is irrational, com­
posite motion with two (or more) components is 
called quasi-periodic and the frequencies are called 
incommensurate. A quasi-periodic solution moves 
endlessly on a torus but never intersects itself. The 
orbit is never closed, so it is not periodic. However, 
as a result of arbitrarily close repetition, the motion 
is also said to be recurrent and its orbit is dense 
on the torus (e.g. [Thompson & Stewart, 2002]). 
Since two distinct frequencies are required, a quasi­
periodic solution may appear in a two-dimensional 
system with an external periodic forcing or in a 
higher-dimensional (autonomous) system. 

While the nonlinear feedback loop of the 3D­
NLM can produce periodic solutions, in this study, 
we show that the extension of the nonlinear feed­
back loop is critical for producing a quasi-periodic 
solution in the 5D-NLM. The paper is organized 
as follows: In Sec. 2, we discuss the governing 
equations of the 5D-NLM and the analytical and 
numerical methods. In Sec. 3, we present ana­
lytical solutions to illustrate two incommensurate 
frequencies that lead to a quasi-periodic solution. 
We illustrate the role of the extended nonlin­
ear feedback loop in producing incommensurate 
frequencies using eigenvalue analysis and numer­
ical simulations. We additionally discuss numeri­
cal experiments that we design for examining the 
impact of the two coupling terms (that provide 
two-way interactions between the primary and sec­
ondary modes) on the quasi-periodicity of solutions. 
Concluding remarks are provided at the end. In 
Appendix A, we apply the same methods to the 
3D-NLM and compare our results using a recent 
study by [Shen, 2017b], for verification. Appendix B 
presents detailed derivations for the analytical solu­
tion in the locally linear 5D-NLM. Appendix C pro­
vides an analogy between the locally linear 5D-NLM 
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and a coupled spring system [Fay & Graham, 
2003]. 

2. The Five-Dimensional 
N ondissipative Lorenz Model 
(5D-NLM) 

In this section, we present equations for the 5D­
NLM and discuss analytical and numerical methods 
for obtaining and analyzing solutions. The 5D-NLM 
can be obtained by ignoring the dissipative terms 
from the 5DLM [Shen, 2014], as follows: 

dX 
- = ~ + (J y 
dT ' 

dY - = - XZ + r X - v,,, 
dT ~' 

dZ 
- = XY - XY1 -1>-Z' 
dT ' 

dY1 
dT =XZ-2XZ1-~, 

dZ1 
dT =2XY1-~-

(1) 

(2) 

(3) 

(4) 

(5) 

A crossout symbol is applied to each of the dis­
sipative terms that are neglected in the 5D-NLM. 
As discussed in [Shen, 2014], (X, Y, Z, Y1, Z1 ) repre­
sent the amplitude of the Fourier modes. (X, Y, Z), 
which appear in the 3DLM, are referred to as the 
primary modes. (Yi, Z1), which are included as high 
wavenumber modes in the 5DLM, are referred to 
as the secondary modes. T is dimensionless time. 
<J is the Prandtl number, and r is the normal­
ized Rayleigh number or the heating parameter. 
Detailed information regarding these parameters 
is provided in [Shen, 2014]. The "forcing" terms 
on the right-hand side of the above equations are 
referred to as the linear force ( or the linear heat­
ing term, r X) and the nonlinear force terms ( e.g. 
-XZ and XY). Shen [2014] showed that the nonlin­
ear terms -XZ and XY form a nonlinear feedback 
loop with a pair of upscaling and downscaling pro­
cesses amongst the primary modes (e.g. Y and Z). 
With inclusion of secondary modes, two additional 
pairs of upscaling and downscaling processes are 
introduced. One pair contains -XY 1 and XZ and 
the other pair includes -2XZ 1 and 2XY 1 · The for­
mer enables two-way interactions between the pri­
mary and secondary modes. The latter indicates 
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two-way interactions amongst the secondary modes. 
The nonlinear terms - XY 1 and XZ are also 
referred to as coupling terms due to their role in 
coupling the primary and secondary modes. The 
two additional pairs of upscaling and downscal­
ing processes extend the original nonlinear feedback 
loop with -XZ and XY. 

In this study, we discuss the appearance of a 
quasi-periodic solution that is associated with the 
extended nonlinear feedback loop. To achieve our 
goal, we apply a perturbation method for trans­
forming the above equations into a system that 
could help us investigate linear or nonlinear numer­
ical solutions. For each of the above variables, we 
decompose a total field ( e.g. U) into the reference 
( or basic) state Uc and a perturbation U' (i.e. U = 
Uc + U'). Here, a variable with a subscript c indi­
cates a reference ( or basic) state and a variable with 
a prime represents a perturbation. In this study, we 
use a nontrivial critical point solution as the ref­
erence state. Applying the perturbation method to 
Eqs. (1)-(5) produces the following equations: 

dX' 
dT = o-Y', 

dY' 
dT = (r - Zc)X' - XcZ' - FN(X' Z'), 

dZ' ( ) ' '8Y' dT = Ye - Y1c X + XcY - c 1 

+ FN(X'Y' - X'YD, 

dY~ ( ) '8 , -- = Zc - 2Z1c X +XcZ - 2XcZ1 
dT 

+ FN(X' Z' - 2X' Z~), 

dZ~ I I ( / /) - = 2Y1cX + 2XcY 1 + 2FN X Y 1 . 
dT 

(6) 

(7) 

(8) 

(9) 

(10) 

Here, a "flag" FN is introduced. Equations (6)-(10) 
with FN = 1 are identical to Eqs. (1)-(5) while 
Eqs. (6)-(10) with FN = 0 represent a locally linear 
system with respect to the basic state. Therefore, 
Eqs. (6)-(10) can be used to obtain linear (FN = 0) 
and nonlinear (FN = 1) numerical solutions. To 
facilitate discussions, Eqs. (1 )-(5) are referred to as 
the 5D-NLM Vl while Eqs. (6)-(10) are referred 
to as the 5D-NLM V2. As compared to the 3DLM, 
the 5D-NLM V2 (with FN = 0 or FN = 1) con­
tains an increased degree of nonlinearity ( e.g. Xe YD 
that is based on "nonlinear" interactions between 
the primary and secondary Fourier modes through 
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the Jacobian term that represents the nonlinear 
advection of potential temperature [e.g. Eq. (2) of 
[Shen, 2014]]. Mathematically, multiplication of two 
spatial modes with different wavenumbers in the 
Jacobian term may produce a third mode whose 
wavenumber is different from those of the original 
two modes. Both the 5D-NLM Vl [i.e. Eqs. (1)-(5)] 
and V2 [i.e. Eqs. (6)-(10)] include the extension of 
the nonlinear feedback loop (via spatial mode-mode 
interaction). While the 5D-NLM Vl describes the 
evolution of the amplitude for each of the Fourier 
modes, the V2 [i.e. Eqs. (6)-(10)] depicts the evo­
lution of the amplitude's departures (i.e. perturba­
tions) from the time-independent reference state. 
Comparing both the 5D-NLM [Eqs. (6)-(10)] and 
3D-NLM [Eqs. (A.1)-(A.3) in Appendix A] with 
FN = 0, the two terms highlighted in circles (i.e. 
-XcY~ and XcZ') are the coupling terms. The 
coupling terms introduced by inclusion of the sec­
ondary modes (i.e. Y1 and Z1) extend the non­
linear feedback loop. In other words, Eqs. (6)-(8) 
(with FN = 0) can be viewed as an extension 
of the 3D-NLM (with FN = 0) that includes the 
feedback term -XcY~ from the secondary mode. 
Furthermore, when the term -XcY~ is neglected, 
Eqs. (6)-(8) (with FN = 0) are reduced to become 
3D-NLM (with FN = 0). 

To assure the validity of our numerical 
approaches, we present analytical and numeri­
cal solutions for the locally linear and nonlin­
ear 3D-NLM in Appendix A. The same numerical 
approaches are applied to perform simulations with 
the 5D-NLM V2. To illustrate the quasi-periodic 
solution, we first solve the locally linear system (i.e. 
the 5D-NLM V2 with FN = 0) to obtain the analyt­
ical solutions of eigenvalues and eigenvectors. The 
eigenvalues are used to indicate the appearance of 
incommensurate frequencies and the eigenvectors, 
as well as eigenvalues, are used to construct an 
analytical solution for the quasi-periodic orbit. By 
performing numerical simulations, we then discuss 
the impact of the extended nonlinear feedback loop 
(and the coupling terms as well) on the appearance 
of quasi-periodic solutions. 

2.1. Analytical and numerical 
methods 

Analyzing the 5D-NLM Vl (or V2), we can choose 
the following basic ( or reference) state: (Ye, Zc, 
Y1c, Zic) = (0, r, 0, ;), Xe can be any number and, 
to facilitate discussions, is assumed to be positive. 
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With the choice of the basic state, the locally linear 
system can be expressed as follows: 

(11) 

----+ 
where U' is a column vector and its transpose is 
equal to (X', Y', Z', Y~, Z~), and 

I 
0 ()" 0 0 0 

0 0 -Xe 0 0 

A5D = 0 Xe 0 @ 0 (12) 

0 0 ® 
0 0 0 

\ ~ 0 

We first solve the analytical solutions of the 
eigenvalues and eigenvectors using the above matrix 
and apply them to obtain an analytical solution. 
An eigenvalue (>-) and its corresponding eigen-

----+ 
vector (V) are determined by the relationship 

----+ ---, 
A5D V = >-V. To examine the validity of the 
method, we apply it for solving the 3D-NLM and 
discuss the results in Appendix A. Here, it should be 
noted that the upper box in Eq. (12) represents the 
matrix of the 3D-NLM [e.g. Eq. (A.5)]. In Sec. 3.1, 
we discuss solutions for the eigenvalues and eigen­
vectors of the matrix for the 5D-NLM. 

For numerical solutions of the 5D-NLM V2 ( or 
Vl), the solver of ordinary differential equations in 
Python is used to perform numerical simulations. 
Without a loss of generality, parameters, including 
r = 25 and O" = 10, are kept constant. A dimension­
less time interval ( 6 T) of O. 001 is used and the total 
number of time steps is 2,048, giving a total dimen­
sionless time (T) of 2.048. We select the parameters 
in order to analyze the spectrum using a FFT (Fast 
Fourier Transform) and to illustrate the periodicity 
of solutions. Longer time simulations are also per­
formed to confirm our conclusions. In this study, 
the initial conditions (ICs) for the control run are 
the following: 

(X, Y, Z, Y1, Z1) = (X 0 , 0, 0, 0, 0), (13a) 

which yields: 

(X', Y', Z', Y~, Z~) = ( X 0 - Xe, 0, -r, 0, -;) . 

(13b) 

Since our focus is illustrating the role of the 
extended nonlinear feedback loop in producing 
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quasi-periodic solutions, without a loss of gener­
ality, the reference (basic) state Xe is determined 
as described in the following discussion. Using 
Eqs. (1), (3), and (5), we can obtain the following 
conservation law (e.g. [Shen, 2014]): 

- - O" Z + - = constant = -X
2 

( Z 1 ) X; 
2 2 2 ' 

(14) 

which represents conservation of the normalized 
total energy (i.e. the sum of kinetic and potential 
energies). In the 3D-NLM, the conservative quan­
tity, one of the so-called Nambu Hamiltonians (e.g. 
[Nambu, 1973; Nevir & Blender, 1994; Floratos, 
2011; Roupas, 2012; Blender & Lucarini, 2013]), 
becomes X 2 /2 - O" Z = constant. After plugging 
Ze = r and Z1c = r /2 into the above equation, 
Xe is determined as: 

X = ✓:X-2 50"r 
e O + 2 • (15) 

The second term inside the radical sign, 50"r /2, is 
denoted by X~ntl (i.e. Xentl = ±J50"r/2). To sim­
plify discussions, we assume a positive Xcntl and use 
X 0 = Xentl as the initial condition of the control 
run. In the three parallel runs, the ICs for X 0 are 
given by 0.25Xcntl, 0.5Xcntl and 4Xcntl, respectively. 
While perturbations are computed analytically or 
numerically using the 5D-NLM V2 with FN = 0 or 
FN = l, the total fields shown in the figures are 
discussed in the next section. A frequency analysis 
is performed using perturbations. Since Ye and Y1c 
are zero, Y' and Y~ also represent the total fields. 
To assure the validity of our approaches, solutions 
for both 5D-NLM Vl and V2 that are identical are 
compared (not shown). 

3. Results and Discussions 

3.1. Linear analytical solutions 

Assuming i/3 to be an eigenvalue of the matrix in 
Eq. (12), the characteristic equation of the locally 
linear system is given by: 

-i{J ()" 0 0 0 

0 -i{J -Xe 0 0 

det 0 Xe -i{J -Xe 0 = 0, 

0 0 Xe -i{J -2Xe 

0 0 0 2Xe -i/3 

(16a) 
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which is equivalent to: 

/3(/34 
- 6/32 X~ + 4X~) = 0. (16b) 0 

The above yields the following solutions: 

/31 = ✓(3 + V5)Xc, 

/32 = -✓(3 + V5)Xc, 

✓ ~ (17) /33 = (3 - v 5)Xc, 

/34 = -✓(3 - V5)Xc and 

/35 = o. 
Here, real numbers /31 -/34 indicate two pairs of imag­
inary eigenvalues for the matrix. The eigenvectors 
corresponding to the eigenvalues i/31 -i/35 are: 

X' 

Y' 
---, 

Z' Vk = 
Y' 1 

Z' 1 

>- 0 

-10 

-20 

-38 .0 0.2 

if3k ( ;;i + 2:c) 
-/3~ + 2 
2X~ 

if3k 
2Xc 

1 

here k = l, 2, 3, 4 and 

0.4 
T 

(a) 

0.6 

"' ., high freq mode 
~ ~ low freq mode 
- total field 

0.8 

---, 
Vi= 0 

0 

0 

(18) 

For each of the eigenvectors corresponding to /31-

/34, the ratio (Ry) between the second and fourth 
components (rows) is: 

(
-/3~ 5 ) 1 2 2 

Ry(/3k) = 2Xc 2X3 + 2X = x2 (5Xc - f3k), 
C C C 

yielding: 

Ry (f3k) < 0 for /31 and /32 and 

Ry(/3k) > 0 for /33 and /34. 

(19a) 

(19b) 

Similarly, the ratio (Rz) between the third and fifth 
components (rows) is: 

2 

( ) -f3k l ( 2 2) Rz f3k = 2x2 + 2 = 2x2 4Xc - f3k , (20a) 
C C 

leading to: 

Rz(f3k) < 0 for /31 and /32 and 

Rz (f3k) > 0 for /33 and /34. 
(20b) 

Physical interpretations in Eqs. (19b) and (20b) 
are provided below in Fig. 1. Using the eigenvalues 
and eigenvectors [e.g. Eqs. (17) and (18)], a general 

-5 

-la .0 0.2 0.4 

(b) 

0.6 0.8 1.0 
T 

Fig. 1. An analytical solution of the locally linear 5D-NLM for time evolution of the primary and secondary modes (i.e. Y 
and Y1) for TE [O, 2.048] [i.e. Eq. (22)]. The total field for Yin (a) and for Y1 in (b). High-frequency components for Y and 
Y1 in (c), which are out of phase. Low-frequency components for Y and Y1 in (d), which are in phase. Solid lines indicate the 
primary mode (Y). Dashed lines indicate the secondary mode (Y1)-
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-3a,~------::-"---=----c-"--:----,:--'---c-------c-'--=---~ 
.0 0.2 0.4 0.6 0.8 1.0 

T 

(d) 

Fig. 1. ( Continued) 

solution, denoted by U' with its transpose of (X', Y', Z', Y~, ZD, can be written as follows: 

(21) 

where C1-C5 are constant coefficients that can be determined by a specific IC. The above time dependent 
solution consists of trigonometric functions with frequencies of /3j-Two different frequencies are (31 and 
/33. Since the ratio of /31 and {33 is irrational, the two frequencies are incommensurate. Therefore, a quasi­
periodic solution with a dense orbit on a torus is expected, as discussed below. 

For the given IC in Eq. (13b), the corresponding solution becomes: 

X' 

Y' 

Z' 

Y' 1 

Z' 1 

2(/3§ - f3I) 

0 

(
Xo - Xe 5r) 

0 + a- + 4Xc 
0 

0 

+ 2(/3§ - f3t) 

(22) 

Appendix B provides detailed procedures for determining the coefficients C1-C5. From Eq. (22), each of 
the perturbation variables can be expressed as a linear combination of three eigenmodes in big brackets on 
the right-hand side. The first two eigenmodes are oscillatory, have frequencies of /31 and /33, and are referred 
to as high- and low-frequency eigenmodes (or components), respectively. The third mode is nonoscillatory. 
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vVith the exception of X', the projections of 
the other perturbation variables onto the third 
nonoscillatory eigenmode are zero. As shown in 
Eq. (19), the ratio of Y' and Y~ that are projected 
onto the high-frequency component (i.e. f31) is neg­
ative. Therefore, they are out of phase. In contrast, 
for the low-frequency component (i.e. (33 ), the pro­
jections of Y' and Y~ are in phase because their 
ratio is positive [e.g. Eq. (19)]. In a similar manner, 
projections of Z' and Z~ onto the high-frequency 
component are out of phase and their projections 
onto the low-frequency component are in phase [e.g. 
Eq. (20)]. 

Before we discuss the analytical and numerical 
solutions of the 5D NLM V2, we draw the reader's 
attention to the following terms: spatial Fourier 
modes and temporal high- and low-frequency com­
ponents (or eigenmodes). As shown in Eq. (22), 
the solutions include amplitudes of Fourier modes 
at different spatial scales ( e.g. Y and Y1); and the 
amplitude of a specific spatial mode ( e.g. Y) may 
have different temporal frequencies (e.g. f31 and (33). 
Each of the periodic components for the solutions 
of Y' and Y~ in Eq. (22), as well as their sums, are 
displayed in Figs. l(a) and l(b). Note that as Ye 
and Y1c are zero, the solutions in Fig. 1 also rep­
resent the total fields. Interestingly, the amplitude 
of the high-frequency component for Y' is much 
smaller than that of the low-frequency component, 
as explained below. For the primary mode (Y') in 
Eq. (22), the ratio of the amplitude of the high­
frequency component to that of the low-frequency 
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component is 

-(3 3 ( 5x~ - f3I) = (9- 4v'5)(3 3 ~ 0.056,6 3 , 
f31 5X~ - f3§ f31 ,61 

which is small. Therefore, the total solution of the 
primary mode Y' is dominated by the low-frequency 
component. In contrast, for the secondary mode Y~, 
the ratio of the amplitude of the high-frequency 
component to that of the low-frequency compo­
nent is (33 / (31 , which is about 0.38. The result sug­
gests that both high-frequency and low-frequency 
components contribute to the secondary mode Y~. 
Given a specific temporal frequency (e.g. f31 or (33), 
Fig. l(c) [l(d)] indicates that the components of 
Y' and Y{ at the high (low) frequency are out of 
phase (in phase), consistent with the analysis using 
Eq. (19b) [(20b)]. The spectrum of the analytical 
solution for Y' (YD using Eq. (22) is provided in 
Fig. 2 and clearly shows two peaks at distinct fre­
quencies. The locations of the peaks are the same 
as those obtained from the eigenvalue analysis using 
Eq. (17). The Rpedral analyRiR iR applied in order 
to compare the spectrum of linear and nonlinear 
numerical solutions. 

Figure 3 displays the X-Y, X-Z, Y-Y1, and 
Y1-Z1 plots. Compared to periodic solutions of the 
3D-NLM (e.g. Fig. 8), these solution orbits are 
not closed. The recurrent trajectories are confined 
within a region. The size of the region where a 
trajectory travels is determined by the (relative) 
magnitudes of the corresponding components ( e.g. 
X and Y) and by the relative magnitudes of the 
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• 
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frequency 
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Fig. 2. A frequency analysis displaying the amplitudes of Y and Y1 at different frequencies (i.e. the square root of the spectra) 
from the analytical solution in Eq. (22) for T E [O, 2.048]. The vertical lines in blue and reel indicate the frequencies obtained 
from the analytical solution of eigenvalues as reference lines for a comparison with the numerical simulations. Spectrum of the 
total: ( a) Y and (b) Y1. 
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Fig. 3. Analytical solutions for various modes in the 5D-NLM V2 for T E [0,2.048]. (a) X-Y, (b) X-Z, (c) Y-Y1 and 
(d) Y1-Z1. 

low- and high-frequency components [in Fig. 3(a)]. 
Since the low-frequency component plays a domi­
nant role in solutions for the primary modes ( e.g. 
Y) (i.e. its high-frequency component is relatively 
insignificant), the areas of the recurrent trajectories 
appear as bicycle tubes. Note that the orbits are 
not closed but are quasi-periodic. By comparison, 
since both low- and high-frequency components 
are important in the secondary modes, quasi­
periodicity is best shown using solutions for the 
secondary modes [e.g. Fig. 3(c) or 3(d)]. 

3.2. Linear and nonlinear 
numerical solutions 

As discussed in [Shen, 2017b], the original nonlinear 
feedback loop of the 3D-NLM acts as a (nonlinear) 
restoring force to produce (linear and nonlinear) 

periodic solutions ( as well as the so-called homo­
clinic orbit solution). In the previous section, we 
discussed the analytical solutions and the corre­
sponding frequencies in order to illustrate the quasi­
periodicity using the locally linear 5D-NLM V2 
which consists of Eqs. (6)-(10) with FN = 0. Here, 
we examine the association of the quasi-periodic 
solutions with the extended nonlinear feedback loop 
using numerical simulations produced by the 5D­
NLM V2. We first compare analytical and numer­
ical solutions of the 5D-NLM V2 with FN = 0 as 
model verification. Then, the model with FN = 0 
and FN = l is used for comparing linear and non­
linear simulations in order to reveal the impact of 
nonlinearity on the quasi-periodicity of solutions. 

Figures 4(a)-4(c) provide a time evolution of 
the analytical solutions and linear simulations with 
FN = 0 in the 5D-NLM V2. As shown with X, 
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Fig. 4. A time evolution of X, Y and Y1. (a)-(c) A comparison of the analytical solutions in Eq. (22) and numerical results 
from the 5D-NLM V2 with FN = 0. (d)-(f) A comparison of linear and nonlinear simulations with FN = 0 and FN = l in 
the 5D-NLM V2. 

Y, and Y1, good agreement between the analytical 
and numerical solutions is obtained. By choosing 
FN = 1 and repeating the numerical simulations, 
the impact of nonlinearity on the solutions is exam­
ined. As shown in Figs. 4(d)-4(f), the nonlinear sim­
ulations produce larger amplitudes and larger peri­
ods as compared to the linear simulations. Overall, 
the nonlinear solution has two dominant frequen­
cies. The underlying mechanism for the nonlinear 
modulation in producing a larger period for the case 
with a relatively small X 0 is beyond the scope of this 
study. Instead, as discussed using Figs. 5 and 6, we 
compare cases with a small and large X 0 to illus­
trate the initial conditions under which a (linear) 
quasi-periodic solution may capture the major fea­
ture of the corresponding nonlinear solution. 

In addition to the control run, parallel exper­
iments are performed by varying X 0 in order to 

understand the dependence of solutions on the ICs. 
As compared to the control run where X 0 = Xcntl = 
J5a-r /2 is used, three different initial values of X 0 , 

0.25Xcntl, 0.5Xcntl, or 4Xcntl, are used in the par­
allel runs. Since the points are either close to or 
far from the origin, a saddle point in association 
with the heating term (r X), these parallel runs help 
illustrate the impact of the saddle point on solu­
tions. Linear and nonlinear simulations for the par­
allel and control runs are provided in Fig. 5. As 
discussed earlier, the trajectories for the primary 
modes appear as bicycle tubes [e.g. Figs. 5(a)-5(c)], 
because the corresponding low-frequency compo­
nents play a dominant role in the solutions. Trajec­
tories with the secondary modes can better reveal 
the quasi-periodicity [e.g. Fig. 5(d)]. The nonlinear 
solution for the run with a small X 0 in Fig. 5(b) 
appears as half of a glasswing butterfly in the 3D 
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Fig. 5. The impact of various ICs on the solutions. Panels (a)-(b) display X-Y plots from the linear and nonlinear solutions 
using four different I Cs, respectively. Panel ( c) displays both linear and nonlinear solutions from two cases for comparison. 
Panels (d)-(e) display Y1-Z1 plots from the linear and nonlinear solutions for the IC of X 0 = 0.25Xcntl, respectively. Panel (f) 
includes both of the results from panels (d)-(e). 

NLM [e.g. Fig. 9(b) in this study or Fig. 4 of [Shen, 
2017b]], indicating the impact of the saddle point. 
Differences between the linear and nonlinear solu­
tions are clear in Fig. 5(c) and become smaller when 
initial conditions are further away from the saddle 
point (i.e. the origin). The same initial conditions 
are used to perform simulations with the 5D-NLM 
Vl and the 5D-NLM V2 with FN = 1 in order to 
further verify the results and obtain the same solu­
tions from Vl and V2 with FN = 1. As discussed 
in Sec. 2, the 5D-NLM V2 with FN = 0 or FN = 1 
includes the extended nonlinear feedback loop asso­
ciated with additional upscaling and downscaling 
processes. When linear and nonlinear solutions are 
very close under the condition of a larger X 0 , yield­
ing a larger Xe, departures from the reference state 

(i.e. perturbations) are small. An additional spec­
trum analysis is provided below. 

Figure 6 displays a spectral analysis of the sec­
ondary modes for the linear and nonlinear solutions 
from two runs with initial conditions of X 0 = 
0.25Xcntl and X 0 = 4Xcntl· When the initial condi­
tion is closer to the saddle point, larger differences 
between the linear and nonlinear simulations appear 
[e.g. Fig. 5(c)]. The result is also indicated by more 
than two peaks in the spectrum of the nonlinear 
solutions [e.g. Figs. 6(a) and 6(b)]. When the initial 
condition is far from the saddle point, the locally 
linear system produces a solution that is a good 
approximate solution for the nonlinear system [e.g. 
Figs. 6(c) and 6(d)]. The results above suggest that 
when X 0 is very large and thus is far from the saddle 
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tra, from numerical solutions with Xo = 0.25;r;; (top) and Xo = 4;r;; (bottom). Panels (a) and (c) are from linear 
simulations and panels (b) and ( cl) are from nonlinear simulations. 

point, the nonlinear solution can be approximated 
by a corresponding linear solution that is quasi­
periodic with two incommensurate frequencies. 

3.3. Impact of coupling terms on 
quasi-periodic solutions 

Stability of the (locally linear) 5D-NLM was previ­
ously analyzed using the 5 x 5 matrix in Eq. (12) 
that has two pairs of imaginary eigenvalues, lead­
ing to two incommensurate frequencies. Here, we 
further discuss the association of incommensurate 
frequencies with the extended nonlinear feedback 
loop. As shown in Eq. (12), the 3 x 3 submatrix high­
lighted in the upper box represents the locally lin­
ear 3D-NLM (see details in Appendix A). Since the 

submatrix has eigenvalues 0 and ±iXe, the (locally 
linear) system produces an oscillatory solution with 
a frequency of Xe, In other words, the locally lin­
ear version of Eqs. (6)-(8) without inclusion of the 
feedback term associated with the secondary mode 
(XeYU is reduced to become the 3D NLM and only 
has a frequency of Xe, In comparison, the locally 
linear system in Eqs. (9) and (10) describes the 
time evolution of the secondary modes (Y1 and Z1). 
When the "control" term associated with the pri­
mary mode (XeZ') is neglected in Eq. (9), the lin­
ear subsystem [Eqs. (9) and (10)] is decoupled from 
the subsystem for the primary modes. The decou­
pled subsystem can be analyzed using a 2 x 2 sub­
matrix in the lower box of Eq. (12), as discussed 
below. Since the submatrix has a pair of imaginary 
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eigenvalues (±i2Xc), the decoupled subsystem has 
a periodic solution with a frequency of 2Xc that is 
larger than the solution for the primary mode in the 
3D-NLM. Thus, the above matrix analysis without 
the coupling terms suggests that when the two sub­
systems for motions of the primary and secondary 
modes are decoupled, only periodic solutions are 
observed. This can be also shown with the uncou­
pled spring systems as discussed in Appendix C. 
Thus, all the results indicate the importance of cou­
pling terms in producing quasi-periodic solutions. 
To illustrate this feature, we further perform simu­
lations using the 5D-NLM V2 with or without the 
coupling terms, XcY~ and XcZ'. Figure 7 provides 
the numerical simulations which contain two cou­
pling terms in panel (a), one coupling term (XcYD 
in panel (b), one coupling term (XcZ') in panel (c), 
and no coupling terms in panel ( d). As is clear in 
Fig. 7, only the simulation with two coupling terms 
displays a quasi-periodic solution. The three addi­
tional cases produce a closed orbit. 
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The discussions provided above using the 
matrix analysis and model simulations are briefly 
summarized as follows: (1) Each of the above sub­
systems that have a frequency of Xe or 2Xc is 
analogous to a single spring system with a spring 
constant of X~ or (2Xc) 2 

( also see Appendix C 
for details) and has a periodic solution. (2) The 
locally linear 3D-NLM is similar to a single spring 
system. The locally linear 5D-NLM is identical to 
the system with two coupled springs and two differ­
ent spring constants that lead to two incommen­
surate frequencies (as discussed in Appendix C). 
(3) While the locally linear 3D-NLM has a peri­
odic solution, the locally linear 5D-NLM produces a 
quasi-periodic solution. ( 4) The 5D-NLM is derived 
based on the extension of the nonlinear feedback 
loop of the 3D-NLM. Both the inclusion of the 
secondary modes and their coupling with the orig­
inal primary modes are important for the appear­
ance of the quasi-periodic solutions. (5) The results 
indicate the dependence of quasi-periodicity on 
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Fig. 7. Solution of LL 5D-NLM FN = 0 becomes periodic, if coupling terms XY1 in ~~' and/or XZ in dr~ are ignored. 
(a) All terms retained for completely coupling, (b) XcZ' ignored, (c) XcYi ignored and (d) XcZ' and XcYi ignored. 
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mode truncation in high-dimensional nondissipative 
Lorenz models. 

4. Concluding Remarks 

In this study, we extended our recent work with 
the 3D-NLM to illustrate the role of the extended 
nonlinear feedback loop in producing quasi-periodic 
trajectories using a five-dimensional nondissipative 
Lorenz model (5D-NLM). Linear analytical solu­
tions were first presented to show two incommen­
surate frequencies whose ratio is irrational. Linear 
and nonlinear numerical solutions using the 5D­
NLM V2 were presented to illustrate the role of 
the extended nonlinear feedback loop in produc­
ing two incommensurate frequencies; results suggest 
the dependence of solution's recurrence ( e.g. quasi­
periodicity) on model coupling (e.g. via a two-way 
or one-way coupling). 

By linearizing the 3D-NLM with respect to a 
nontrivial critical point, we showed that the feed­
back loop produces periodic modes. We applied the 
same method for analyzing the 5D-NLM. As dis­
cussed in our previous study, the secondary modes 
(Y1 and Z1) of the 5D-NLM (or its dissipative ver­
sion) were selected for extending the nonlinear feed­
back loop of the 3D-NLM and providing a second 
pair of downscaling (XZ) and upscaling (XY 1) 
processes. Based on a linear analysis, the 3D-NLM 
was determined to have one frequency, leading to a 
periodic solution. The 5D-NLM was determined to 
have two incommensurate frequencies that yield a 
quasi-periodic solution. We showed that the occur­
rence of incommensurate frequencies in the 5D­
NLM is associated with the coupling terms (XcZ' 
and XcYD that extend the nonlinear feedback loop 
to provide two-way interactions between the pri­
mary (X, Y, Z) and secondary Fourier modes (Y1, 
Z1). The individual impact of the two coupling 
terms (XcZ' and XcY~) was examined using the so­
called one-way interaction approach that disables 
either the downscaling or upscaling process. A sys­
tem with one-way interaction always produces peri­
odic solutions with two frequencies whose ratio is 
rational. A system that decouples the primary and 
secondary modes by neglecting both of the coupling 
terms also produces periodic solutions, as expected. 
A mathematical analogy between the locally linear 
5D-NLM and the coupled spring system is provided 
to illustrate the appearance of the quasi-periodic 
solution. When an initial condition is far from the 

WSPC/S0218-1274 1850072 

saddle point, nonlinear solutions display two promi­
nent frequencies that are similar to those obtained 
using the linear eigenvalue analysis. 

Therefore, we conclude that the extended non­
linear feedback loop within the 5D-NLM leads to 
the appearance of quasi-periodic solutions that pose 
challenges for accurately predicting the evolution 
of solutions (in both magnitudes and phases) when 
the initial condition displays an uncertainty. In a 
recent study, we show that a 7D nondissipative LM 
with further extension of the nonlinear feedback 
loop can produce three incommensurate frequencies 
[Shen & Faghih-Naini, 2017]. Since the extension 
of the nonlinear feedback loop results from spatial 
mode-mode interactions that are rooted in nonlin­
ear temperature advection, the two studies suggest 
that quasi-periodic solutions may also appear in 
higher-dimensional LMs. 

One of the original goals was indeed to under­
stand why a high-resolution global model ( e.g. [Shen 
et al., 2006]) with increased degree of nonlinearity 
can have improved forecasting skills, given the well­
accepted view that the source of chaos is nonlin­
earity. While our idealized Lorenz models still have 
very limited degree of nonlinearity, as compared to 
the global model, we have already applied the high­
dimensional Lorenz models to address the following 
weather-related questions: (1) whether an increased 
degree of nonlinearity always reduces system stabil­
ity; (2) whether the statement of weather is chaotic 
is precise; (3) in addition to chaos and (pure) peri­
odicity, does the weather include any other types 
of solutions? More importantly, we have started 
applying the dynamics of limit cycle/torus solutions 
to examine the relationship between the remark­
able predictability of African Easterly Waves ( e.g. 
[Shen et al., 2010b]) and strong surface heating in 
30-days simulations. Note that (1) has been par­
tially addressed in our recent studies using high­
dimensional Lorenz models; (2)-(3) were discussed 
at the conferences (e.g. [Shen et al., 2018]); and (4) 
will be presented at the Asia Oceania Geosciences 
Society (AOGS) Annual Meeting in June 2018 (e.g. 
[Shen, 2018]). 
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Appendices 

Appendix A 

Linear Analytical Solutions 
for the 3D-NLM 

In this Appendix, we verify our numerical 
approaches by comparing the numerical solutions 
of the locally linear 3D-NLM with the analytical 
solutions. We then illustrate the impact of nonlin­
earity by comparing the linear and nonlinear numer­
ical solutions. When the terms that include sec­
ondary modes (i.e. Y1) are neglected, Eqs. (6)-(8) 
are reduced to become: 

dXI - yi 
dT - (J" ' 

(A.l) 

WSPC/S0218-1274 1850072 

dY
1 

( ) I I I I dT = r - Ze X - XeZ - FN(X Z ), (A.2) 

dZ 1 

dT = YeX
I + XeY

1 + FN(X
1
Y

1
). (A.3) 

The locally linear system with FN = 0 yields the 
following equation: 

(A.4) 

(A.5) 

-The transpose of U1 is ( X 1
, Y 1

, Z 1
). The above 

matrix has the following three eigenvalues: 0, 
iXe, and -iXe, as well as their corresponding 
eigenvectors: 

-Vi= 
i -i 

1 1 

(A.6) 

Using the above eigenvectors as the basis functions, 
a general solution is written as follows: - - - -U1(T) = C1e>11TVi + C2e.A2 TV2 + C3eA3TVi, (A.7) 

which leads to 

C'.) ~ C, (~) + (C, + Cs) 

(J" 

Xe cos(XeT) 

-sin(XeT) 

cos(XeT) 

(J" • 

Xe sm(XeT) 

cos(XeT) 

sin(XeT) 

(A.8) 

Here, C1, C2, and C3 can be determined by an IC at 
T = 0. Given an IC (X, Y, Z) = (Xo, 0, 0), we have 
(X 1

, Y1, Z 1
) = (Xo -Xe, -Ye, -Ze) with Ze = T and 

Ye = 0. Furthermore, Xe = J20"r + X5 as a result 
of the relationship derived from the conservation 
law X 2 /2 - O"( Z) = X~/2. Without a loss of gener­
ality, Xo = ~ is chosen for the control run and 
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Fig. 8. A comparison of analytical and numerical solutions from the locally linear 3D-NLM. (a) X-Y, (b) X-Z, (c) Y-Z 
and (d) T-Y. 
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evolution of Y for linear and nonlinear simulations from two runs with different ICs. 
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Xo is varied in parallel runs. Applying the above IC 
in Eq. (A.8), we have 

(
Xo - Xe) (1) 

0 = C1 0 

-r 0 

+i(C2 -Cs) m 
0 

1 

(A.9) 

While the second row (component) of Eq. (A.9) 
leads to C2 = C3, the third row yields C2 + C3 = 
-r. Thus, C2 = C3 = -r/2. Plugging C2 and C3 
into the first row of Eq. (A.9), we obtain C1 = 
X0 - Xe+ 'Jfc = (2../2-/)vcir. For er = 10 and r = 25, 
C1 ~ -1.3564 and C2 = C3 = -12.5. 

Figure 8 displays the analytical solution and the 
linear numerical solutions from Eqs. (A.1)-(A.3) 
with FN = 0, indicating good agreement between 
them. Figure 9 compares linear and nonlinear solu­
tions with various initial conditions. The nonlinear 
solutions were previously studied by Shen [2017b]. 
As shown in Figs. 9(c) and 9(d), differences between 
the linear and nonlinear solutions are significant 
when the initial condition is closer to the origin (i.e. 
the saddle point). 

Appendix B 

Derivations of Linear Analytical 
Solutions for the 5D-NLM 

Appendix B discusses how the coefficients C1 -C5 in 
Eq. (21) are determined to obtain the solution in 

Eq. (22). To facilitate discussions, we define the fol­
-(32 

lowing time-independent parameters: A1 = 2x½ + 
C 

21 , A3 = ~{~ + 21 , M = C1 +C2, N = i(C1 -C2), P: C3 + C4 cand Q = i(C3 C,,). By plugging the 
above into Eqs. (18) and (21), we have: 

X' 

Y' 

Z' =lvl 

Y' 1 

Z' 1 

+N 

+P 

er A1 cos(,61 T) 

-,61A1 sin(,61T) 

( ;:; + 2) COS (,61 T) 

-,61 
- sin(,61T) 
2Xe 

cos(,61 T) 

er A1 sin(,61 T) 

,61 A1 cos(,61 T) 

(
-,62 ) 
2xi + 2 sin(,61 T) 

,61 
-X COS (,61 T) 
2 e 

sin(,61 T) 

er A3 cos (,63 T) 

- ,63 A3 sin (,63 T) 

(;:~ + 2) cos(,63T) 

-,63 . (,6 ) -X sm 3T 
2 e 

cos(,63T) 
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+Q 

0 

+Cs O 

0 

0 

CY A3 sin(,63T) 

,63A3 cos(,63T) 

(B.l) 

Applying the initial condition at T 

obtain: 
0, we 

X 0 -Xe 

0 

-r 

0 
r 

2 

CYA1 

0 

= NI -,Gr + 2 
2X~ 

0 

1 

CYA3 

0 

+P -,6§ + 2 
2X~ 

0 

1 

0 

+Cs O 

0 

0 

0 

,G1A1 

0 
+N 

,61 
2Xe 

0 

0 

,63A3 

0 
+Q 

,63 
2Xe 

0 

(B.2) 

From the second and fourth rows (or components), 
we have: 

,G1A1N + ,63A3Q = 0, 

f!J:_N + ,63 Q = 0 
2Xe 2Xe ' 

(B.3) 

(B.4) 

Quasi-Periodic Orbits in the 5D-NLM 

yielding N = Q = 0 as the result of ,61 f ,63 and 
A1 f A3 . Thus, we have C1 = C2 and C3 = C4. 
The first, third, and fifth rows give the following 
equations, respectively: 

Xo-Xe 
A1NI + A3P + Cs = ---, (B.5) 

CY 

( -,G~ + 2) NI+ (-;! + 2) P = -r, (B.6) 
2Xe 2 e 

-r 
NI+ P = 2 . (B.7) 

Solving the above equations, we have: 

-,G§r ,Grr 
NI = 2(,6§ - ,Gr)' p = 2(,6§ - ,Gr) and 

(B.8) 
Xo - Xe 5r 

Cs= CY + 4Xe' 

representing the coefficients of the right- hand sides 
in Eq. (22), respectively. 

Appendix C 

An Analogy Between the Locally 
Linear 5D-NLM and a Coupled 
Spring System 

Using Ye = 0, Y1e = 0, Ze = r, Z1c = ;, and 
FN = 0, Eqs. (6)-(10) represent the locally linear 

x2 
C 

Fig. 10. A coupled system with two springs and two masses 
with the same weight (i.e. m1 = m2). k1 and k2 are spring 
constants. x 1 ( T) and x2 ( T) are the displacements of the cen­
ters of masses from equilibrium. When x 1 = Y~, k1 = 4X~, 
x2 = Y', and k2 = X~, the equations of the coupled spring 
system are identical to those in the locally linear 5D-NLM. 
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5D-NLM with respect to the nontrivial critical 
point. From Eqs. (7) and (8), we can obtain: 

= -X~(Y 1 
- Y~). (C.l) 

Equations (9) and (10) lead to: 

d2Y 1 dZ 1 dZ 1 

dr/ = Xe dr - 2Xc d/ 

= Xc(XcY 1 
- XcYD - 2Xc(2XcY~) 

(C.2) 

In comparison, by considering a model with two 
springs and two masses with the same weight, the 
equations can be written, as follows (e.g. Eq. (2.1) 

WSPC/S0218-1274 1850072 

of [Fay & Graham, 2003; Kreyszig, 2011]): 

d2x1 
dr 2 = -k1x1 - k2(x1 - x2), (C.3) 

d2x2 
- = -k2(x2 - x1). (C.4) 
dr 2 

Here, an upper spring with a spring constant k1 is 
attached to the ceiling on one end and to the first 
mass on the other end, as shown in Fig. 10. The 
upper (low) end of the low spring with a spring 
constant k2 is attached to the first (second) mass. 
x 1 ( r) and x 2 ( T) are the displacements of the cen­
ters of masses from equilibrium. Since the first mass 
experiences two restoring forces from both springs 
and since the second mass is only influenced by the 
low spring, we may choose x1 = Y~, k1 = 4X~, 
x 2 = Y1, and k2 = X~. Thus, Eqs. (C.3) and (C.4) 
are identical to Eqs. (C.2) and (C.l), respectively. 
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